
Contemporary Peer
Code Review
Practices in

Research Software

Jeffrey C. Carver
University of Alabama

Oak Ridge
November 8, 2019

// file: IVR.CPP
void IVR()
{

//press 1 for account balance, 2 for last transaction,
//3 for last statement, any other for operator
play_prompt();

int key_pressed= get_user_choice();

if(key_pressed ==1)
{

play_account_balance();
}
else if(key_pressed =2)
{

play_last_transaction();
}
else if(key_pressed ==3)
{

play_last_statement();
}

else transfer_to_operator();
}

Assignment operator
instead of comparison

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

//file: printer.java

if (user.isAuthenticated)

{

userAccess = checkUserAuthorization(user);

//if user has access to printer

if(user.isAuthenticated && userAccess.printer)

printUsageReport ();

else

emailUsageReport();

}

1

2

3

4

5

6

7

8

9

10

11

Redundant check

Do you think only novice developers
make these mistakes?

https://twitter.com/noeabarcam/
status/394749401283190784

10

11

Where does it fit?

Code Review

Other Activities

12

Code Review Goals

Code Review Goals
•Team building
•Better shared understanding
•Team cohesion
• Peer impression

•Code Quality
• Find/fix defects early
• Identify common problems
•Different perspectives
•Consistency in code/design
•More maintainable code

•Personal
•Learning

Goal is for peace and harmony
in the team, not antagonism.

Code Review Practices

17

What do I
need to do?

For The Developer
• Realize that the goal of code review it to improve the overall

code, not to evaluate the quality or worth of the developer

• Remove the fear of making to mistakes an create an
atmosphere where admitting and fixing is OK

•You are not your code

• Be humble
• You will make mistakes, we all do
• Someone else will always know more, its ok, learn from them
• People bring different perspectives, that’s a good thing

• Fight for what you believe, but gracefully accept defeat

19

What am I
supposed to do?

For The Reviewer
• Focus on the code not the author
• Use “I” statements rather than “you” statements
• Criticize the author’s behavior, not their attributes
• Talk about the code, not the coder

• Ask questions rather than make statements – avoid “why”
questions

• Accept that there are different solutions

• Choose carefully which battles to fight

• Remember to praise good code

• Take your time and do it well

Code Review Techniques

Code

Algorithms

What to Examine
•Examine the code
•Is the code readable to a human?
•Are variables and method names clear?
•Is there sufficient documentation for someone to come back 6
months later (or someone new) to understand what the code is
doing?

•Examine the algorithms in detail
•Are there any hidden assumptions, not specified, that could cause
problems?
•Are there edge cases that may not work?
•What happens with bad or missing data?
•Does the algorithm do what it is supposed to? – Use stepwise
abstraction

Example - Stepwise Abstraction
•Examine the algorithm embedded in the code

•Start at the bottom, extract low-level functionality

•Group low-level functionality into higher-level

•At top level, compare with desired plan

while ((a>b) || (b>c) || (c>d))
{
if(b>a)
{
i = b;
b = a;
a = i;

}
if(c>b)
{
i = c;
c = b;
b = i;

}
if(d>c)
{
i = d;
d = c;
c = i;

}
}

Assign “b” to “i”
Assign “a” to “b”
Assign “i” to “a”

Assign “c” to “i”
Assign “b” to “c”
Assign “i” to “b”

Assign “d” to “i”
Assign “c” to “d”
Assign “i” to “c”

Replace “a” and “b”

Replace “b” and “c”

Replace “c” and “d”

Rearrange “a” and “b” in
descending order

Rearrange “b” and “c” in
descending order

Rearrange “c” and “d”
in descending order

As long as ”a”, “b”, “c”, and
“d” are not in descending order

Requirement: Rearrange ”a”, “b”, ”c”, and “d” in
descending order

Code Review Comment
Exercise

“You are writing cryptic code”

“Its hard for me to grasp what is
going on in the code”

Use I-Messages

“This is not how I would have solved
the problem”

“Why did you use this approach rather
than approach X?”

Ask questions where possible

“You are sloppy when it comes
to writing tests”

“I believe that you should pay more
attention to writing tests”

Criticize the author’s
behavior, not the author

“You’re requesting the serve
multiple times, which is inefficient”

“This code is requesting the service
multiple times, which is inefficient”

Talk about the code, not the coder

“I always use fixed timestamps in
tests and you should too”

“I would always use fixed timestamps in tests
for better reproducibility, but in this simple test,

using the current timestamp is also ok”

Accept different solutions

32

Issues
Identified in
code review

Issues Identified during code reviews

•Misunderstood requirements

•Project design violations

•Coding style

•Critical security defects

•Unsafe methods

• Inefficient code

•Malicious code

• Inadequate input validation

•Lack of exception handling

Developer

My code compiles

My code has been tested and has unit tests

My code includes appropriate comments

My code is tidy / follows coding standard

I have documented corner cases

I have documented workarounds

…

Reviewer

Comments are understandable and appropriate

Comments are neither too many or too few

Exceptions are appropriately handled

Repetitive code has been factored out

Frameworks have been used appropriately

Functionality fits the design/architecture
Code is testable

Code compiles

36

Code Review

Code Review Best Practice
• Practice lightweight code reviews.

• Review fewer than 400 lines of code
at a time.

• Inspection rate should be under 500
LOC per hour.

• Do not review for more than 60
minutes at a time.

• Set goals and capture metrics.

• Authors should annotate source code
before review.

• Use checklists.

• Establish a process for fixing defects
found.

• Foster a positive code review culture.

• Embrace the subconscious
implications of peer review.

Research Code Review?

Research Code Review
- Cultural difference between scientific community and software engineering
community

- Correct results are unknown in many cases

- Testing is extensively complex in scientific software

- Common testing approaches may not fit

- May be better to review the scientific algorithm than to extensively test code

- Lack of proper testing knowledge

- Test to check the science, not the software

- Tend to test when development is about to finish

Our Results

Findings
• Identified a lot of problems beyond style, structure, and bugs. 70 types

of problems found during code review

• Helps produce consistent style and readable code

• Underlying science is more important than code quality

• People had positive experiences including:
• Learning from others
• Understanding the whole project
• Different points of view
• Better overall solutions

• People have negative experiences
• Most related to negative comments
• Slows the process down
• Hard to find good reviewers
• Different levels of expertise in team
• Many just don’t like to do it or have their code reviewed

Typical Code Review
Workflow

Writes

Writes

Requests
Review

Reviews

Edits

Reviews

Reviews
Edits

Abandon

Merge

Mailing List Code Review

52

Pull Requests

Fix a small bug in a project in GitHub Pull Requests

#git clone https://github.com/project/code ; cd code

#vi some.c
#git commit –a –m ‘Fix the frobinator’

#go to web UI
#click fork

#git remote add me https://github.com/$USER/code
#git push me master

#go to web UI
#create pull request

Contemporary Code Reviews

Code Review Tools

Code Review Tools
Gerrit: https://code.google.com/p/gerrit/

Review Board: https://www.reviewboard.org/

Phabricator: https://phabricator.org/

Crucible:
https://www.atlassian.com/software/crucible

References for further reading

• Code Complete, by Steve McConnel

• https://www.codeproject.com/articles/524235/codeplus
reviewplusguidelines

• https://blog.philipphauer.de/code-review-guidelines

• https://github.com/joho/awesome-code-review

• https://www.planetgeek.ch/wp-
content/uploads/2013/06/Clean-Code-V2.1.pdf

https://github.com/joho/awesome-code-review

http://URSSI.US

https://us-rse.org/

@us_rse

https://us-rse.org/

62

Collaborate?

Jeffrey Carver
carver@cs.ua.edu

@SE4Science http://BSSw.io

Photo Credits

- http://incolors.club/collectionfdwn-female-computer-programmer.htm
- http://tech.trivago.com/img/posts/code-review/code-review-3.jpg
- http://www.protectitip.com/wp-content/uploads/2014/11/Software-
Code.jpg

- http://www.computerhistory.org/atchm/wp-
content/uploads/2013/11/marked_up_listing-542x404.jpg

- https://static1.squarespace.com/static/53798babe4b0fca9449cf693/t/53
f78774e4b0ce4d05e4152f/1408730997720/

- https://residentialwastesystems.com/wp-
content/uploads/2016/10/dumpsters-trumbull-ct.jpg
• http://www.hipaasecurenow.com/index.php/beckers-hipaa-compliance-

8-best-practices/
• https://commons.wikimedia.org/wiki/File:Collaboration_(9601759166).j

pg#metadata
• http://entertainment.time.com/2012/05/09/confessions-of-another-

book-reviewer/

