
Cloning: The Need to Understand Developer Intent
Debarshi Chatterji, Jeffrey C. Carver and Nicholas A. Kraft

University of Alabama, Tuscaloosa, AL, USA
dchatterji@ua.edu carver, nkraft@cs.ua.edu

Abstract—Many researchers have studied the positive and neg-
ative effects of code clones on software quality. However, little is
known about the intent and rationale of the developers who clone
code. Studies have shown that reusing code is a common practice
for developers while programming, but there are many possible
motivations for and approaches to code reuse. Although we have
some ideas about the intentions of developers when cloning code,
comprehensive research is needed to gather conclusive evidence
about these intentions and categorize clones based on them. In
this paper we argue that to provide developers with better clone
management tools, we need to interview developers to better
understand their intentions when managing cloned code.

Index Terms—Code clones, software clones, empirical studies,
clone management, software maintenance, developer behavior.

I. INTRODUCTION

Studies indicate that software maintenance costs can ac-
count for up to 90% of the total software lifecycle costs [2],
[4]. Some portion of these maintenance costs are the re-
sult of using programming practices like code cloning in
inappropriate situations. Code cloning is commonly used by
programmers to save time and effort over writing new code
from scratch [7]. Cloning saves effort by reusing complex
frameworks and by replicating design patterns and other high
level code structures. Initially, the term code clone had a
negative connotation because of the belief that cloned code re-
quired additional effort during maintenance (e.g., propagation
of defects through cloning code) [8]. More recently, a number
of studies indicate that code clones are not harmful to software
quality [5], [6], [8], [11]. As this discussion indicates, much of
the research about code clones has focused on understanding
and evaluating their effects during maintenance. By contrast,
little research has focused on understanding developers’ ratio-
nale for cloning code during development.

In addition, the tools that support automated clone detection
have largely been based on the structural definitions of clone
types as summarized by Roy et al. [10]. While there is
usefulness in this type of categorization, the primary drawback
is that it is difficult to use the categorization to evaluate
which clones need to be actively managed and which do not
require attention. Our previous survey of the clone research
community indicated that a large percentage of the survey
respondents believed that most clone tools are more useful
for educational purposes than for providing assistance to de-
velopers performing maintenance tasks. In fact, the consensus
was that the tools currently available provide very little or no
assistance to developers working on maintenance tasks [3].
Based upon these results, we can argue that the current code
clone categorizations do not correspond to the practice of code

cloning during development. We can also argue that the types
of clones are not obvious to developers and are not helpful in
real maintenance tasks.

The previous discussion suggests that most of the code clone
research and existing tools have focused on post hoc analysis
of clones (i.e., in existing code). While this information can
be useful for some tasks, there is also a need to understand the
behavior of developers when creating clones. For help during
typical development and maintenance scenarios, developers
need tools that are designed to address actual use cases.

We argue that one important method for gathering this
information is through developer interviews focused on un-
derstanding their reasons for cloning code. After identifying
these reasons, we can then develop a different type of clone
categorization, i.e., one that focuses on developer intent rather
than focusing on code structure. Kapser et al. [6] developed
a similar categorization regarding developer intent. However,
in this study, developer intent was inferred from a post
hoc analysis of large software systems. Zhang et al. [12]
used interviews to study developer intent. Yet, while they
categorized the developer intentions, they did not use their
findings to categorize code clones.

II. CLONING INTENT AND RATIONALE

We argue that whether cloning is likely to have a positive
effect or a negative effect can, at least partially, be traced to the
intention of developers. We also argue that intentional clones
may have a different effect than unintentional clones.

First, regarding intentional clones, some types of cloning
that are likely to have a negative effect are: duplicating code,
hard coding rather than applying a proper abstraction, and
reusing code because of limited understanding of the code
fragment. These cloning practices can give rise to unnec-
essary coupling and propagate bugs throughout the system.
Conversely, in some cases intentional cloning can prove to
be beneficial. Intentional cloning of robust code architectures
with desired behavior, e.g., design patterns, can improve the
readability and the overall quality of the system. Another
positive example of intentional cloning is re-using an older,
tested version of the software or a platform equivalent as
a ‘springboard’ for the software development. A significant
amount of time and effort can be saved over rebuilding the
same architecture from scratch.

Second, unintentional clones may pose a greater threat to
the quality of the system. While unintentional clones do not
always have a negative impact, they can be easily overlooked
due to their unintentional nature. An example of the source of

978-1-4673-6445-4/13 c© 2013 IEEE IWSC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

14



an unintentional clone is that developers often solve a specific
type of problem in a similar way each time. While the code
may appear to be cloned, it may simply be that developers
have programming idioms and recurring constructs that they
frequently use [1]. In this case, a static, post hoc analysis of
the code would indicate the presence of a clone, while an
understanding of developer intent would indicate otherwise.

III. CATEGORIZATION BASED ON INTENT

In Kapser et al.’s categorization of clones based on in-
tent [6], they described 11 high-level patterns of code cloning
divided into four categories: Forking, Templating, Customiza-
tion and Exact matches. Brief descriptions of these follow

• Forking: large software artifacts are used as “spring-
boards” for new development. The newer versions are
expected to evolve independently from the original code.

• Templating: a known solution to a problem is reused and
modified. For example, templating can bue used when it
makes more sense to reuse code with modification than
to abstract the similar code into a common base.

• Customization: reusing a known solution with extensions
or modifications to fit the current situation.

• Exact matches: repeatedly using a clone fragment
throughout a system because either the fragment is too
insignificant to justify abstraction or it cannot be used
outside of its original context.

While we believe this categorization may be useful, it was
inferred only from a post hoc analysis of the code from large
software systems. There is a need to validate whether these
intentions are really how developers would categorize their
behavior.

Zhang et al. [12] studied the intent behind cloning practices
by interviewing developers. In their paper they categorize
cloning intentions based on technical, personal and organi-
zational reasons. However, the do not provide a categorization
of the clones based on the reasons for cloning that they found
in their study. We propose to conduct developer interviews
as a method for understanding intentions and for using that
understanding to categorize code clones.

IV. DEVELOPER INTERVIEWS

Our motivation for using developer interviews to gather this
information is motivated by two primary objectives. First, this
type of study will provide a solid foundation for categoriza-
tion based on cloning intent and use cases of management.
Second, a categorization based on cloning intent can induce
further research on clone management tools. The tools can be
tailor made for assisting developers in specific maintenance
scenarios. To achieve these objectives, developers should be
interviewed to understand why they clone code fragments or
code structures. However, further validation and conclusive
evidence is required.

Retrospective analysis of source code, like in Kapser et al.’s
study [6], can reveal ’what’ developers did. However, the aim
should be to evaluate the reasons ‘why’ developers clone code
and further classify them into good or bad practices. Roehm

et al.’s study showed that observing code can reveal what
developers do. However, to understand their intentions behind
their actions it is important to directly interview them [9].

The intent part of the information behind a maintenance task
is equally crucial and helps to validate the observations from
post hoc analysis of the system. For example, Thummalapenta
et al. [11] inferred from the results of their source code
analysis that developers of four subject systems knew when
and how to propagate clone changes, but understanding the
developers’ intent is critical to validating this inference.

V. CONCLUSION

To understand the needs of real life clone management
we need to understand why developers take specific actions
that give rise to clones. In this paper we focused on the
requirement of interviewing developers. Although observing
code is important for analyzing patterns, understanding the
intent and rationale behind actions that give rise to such
patterns is of equal importance. Human behavior has various
confounding factors and to judge the effects correctly the only
way is to reach out to the real life developers who handle such
situations in practice.

ACKNOWLEDGMENT

We acknowledge support from NSF grant CCF-0915559.

REFERENCES

[1] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Procİnt’l Conf. on Software
Maintenance, 1998, pp. 368 –377.

[2] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, no. 1, pp. 135–137, Jan. 2001.

[3] D. Chatterji, J. C. Carver, and N. A. Kraft, “Clone research
community beliefs about code clones and developer behavior —
two surveys,” Department of Computer Science, The University
of Alabama, Tech. Rep. SERG-2013-01, 2013. [Online]. Available:
http://software.eng.ua.edu/reports/SERG-2013-01

[4] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Profes-
sional, vol. 2, no. 3, pp. 17–23, May/June 2000.

[5] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger, “Relation of code clones
and change couplings,” in Proc. Int’l Conf. on Fundamental Approaches
to Software Engineering, 2006, pp. 411–425.

[6] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, Dec. 2008.

[7] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in Proc. Int’l Sym.
on Empirical Software Engineering, 2004, pp. 83–92.

[8] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
Proc. IEEE Working Conf. on Mining Software Repositories, 2010, pp.
72–81.

[9] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proc. Int’l Conf. on Software
Engineering, 2012, pp. 255 –265.

[10] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.

[11] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Software Engineering, vol. 15, no. 1, pp. 1–34, Feb. 2010.

[12] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Cloning practices: Why
developers clone and what can be changed,” in Proc. IEEE Int’l Conf.
Software Maintenance, 2012, pp. 285–294.

15


