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ABSTRACT 
Project managers can use capture-recapture models to manage the 

inspection process by estimating the number of defects present in 

an artifact and determining whether a reinspection is necessary. 

Researchers have previously evaluated capture-recapture models 

on artifacts with a known number of defects. Before applying 

capture-recapture models in real development, an evaluation of 

those models on naturally-occurring defects is imperative. The 

data in this study is drawn from two inspections of real 

requirements documents (that later guided implementation) 

created as part of a capstone course (i.e. with naturally occurring 

defects). The major results show that: a) estimators improve from 

being negatively biased after one inspection to being positively 

biased after two inspections, b) the results contradict the earlier 

result that a model that includes two sources of variation is a 

significant improvement over models with one source of variation, 

and c) estimates are useful in determining the need for artifact 

reinspection.   

 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications, 

D.2.4 Software/Program Verification, D.2.8 Metrics, D.2.9 

Management, and K.6.3 Software Management. 

 

General Terms 
Management, Measurement, Documentation, Experimentation, 

Human Factors, Verification 

 

Keywords 
Software Inspections, Capture-Recapture Models, Defect 

Estimation, Requirements, Validation and verification, Empirical 

Study 

 

 

1. INTRODUCTION 
Software inspections are an effective approach to improve quality 

by locating defects early and avoiding their propagation to 

subsequent phases. However, inspections can only provide 

information about the defects that are detected and not about those 

that have yet to be detected. Therefore, to make a decision about 

the need for re-inspection, developers tend to assume that if a 

large number of defects were found during the inspection, then a 

large number probably remains in the document [1]. Because an 

inspection requires the use of limited resources, Informed, 

objective estimates of the remaining defects should guide this 

decision, rather than the subjective estimates or historical trends 

of the remaining defects.  

During software development, project managers and developers 

need to be able to estimate the number of defects still remaining in 

the document. Reliable estimates of the remaining defects after an 

inspection can help managers decide whether to perform a re-

inspection or to pass the artifact through to the next phase. Among 

the different approaches used to make this estimate (e.g., defect 

density, subjective assessment, historical data, capture-recapture 

method, curve fitting method), capture-recapture is the most 

appropriate and widely used method [2, 10]. 

Capture-Recapture (CR) is a statistical method that was originally 

developed by biologists to support population size estimates. CR 

is used in biology by capturing fixed number of animals and 

marking them as captured. The marked animals are then released 

back into the population and allowed time to re-mix. Then another 

trapping occurs. Any marked animals that are captured at the 

second trapping are said to be recaptured. The total number of 

animals in the population is estimated based on the number of 

marked animals that are recaptured. More recaptures indicates a 

smaller estimated population [15, 22].  

Using the same principle, the CR method can be used to estimate 

the number of defects in a software artifact. During an inspection, 

each inspector finds, or captures, some defects (analogous to 

trapping animals). If the same defect is found by another inspector 

(analogous to another trapping occasion), it is said to be 

recaptured [2, 8]. The number of defects found and the overlap of 

defects among inspectors during an inspection is used to estimate 

the total number of defects present in that artifact. Similar to 

biology, larger overlap results in a smaller and more precise 

estimate. The difference between the estimated number of defects 

and number of defects actually found provides insight into the 

number of defects remaining. The CR method makes use of 

 

 

 

© ACM, (2008). This is the author's version of the work. It is posted here 

by permission of ACM for your personal use. Not for redistribution. The 
definitive version was published in Proceedings of the 2nd ACM-IEEE 

International Symposium on Empirical Software Engineering and 

Measurement, Oct 9-10, 2008. 
http://doi.acm.org/10.1145/1414004.1414031 

mailto:gw86@cse.msstate.edu
mailto:carver@ca.ua.edu


Table 1. CR models 

Model Source of Variation(s) 

Mo Inspectors are equal in their defect detection 

ability and defects have equal detection 

probability 

Mt Inspector varies in their defect detection 

abilities and defects are equally detectable 

Mh Defects varies in their defect detection 

probability and inspectors are equally able 

Mth Inspectors differ in defect detection ability, and 

defects differ in detection probability  

 

Table 2. CR estimators 

Models Estimators 

 

 

Mo 

Unconditional Maximum Likelihood Estimator 

(Mo-UMLE) [15] 

*Conditional Maximum Likelihood Estimator 

(Mo-CMLE) [7] 

*Estimating Equations Estimator (Mo-EE) [25] 

 

 

 

Mt 

Unconditional Maximum Likelihood Estimator 

(Mt-UMLE) [15] 

*Conditional Maximum Likelihood Estimator 

(Mt-CMLE) [7] 

*Estimating Equations Estimator (Mt-EE) [25] 

Chaos Estimator (Mt-Ch) [4] 

 

Mh 

Chaos Estimator (Mh-Ch) [5] 

Jackknife Estimator (Mh-JK) [3] 

*Sample Coverage Estimator (Mh-SC) [12] 

*Estimating Equations (Mh-EE) [25] 

 

Mth 
*Sample Coverage Estimator (Mth-SC) [12] 

*Estimating Equations Estimator (Mth-EE) [25] 

Chaos Estimator (Mth-Ch) [5-6] 

 

different types of models (with varying assumptions), each with a 

different set of estimators (described in more detail in Section 2).  

Biologists have comprehensively evaluated the use of CR models 

[15, 22], but their use and evaluation in software engineering is 

relatively new. Most empirical studies in software engineering 

have evaluated the use of CR models on software artifacts with a 

known number of seeded defects [2, 8, 9, 10, 11, 13, 16, 17-18, 

20-21, 23-24]. However, in live software development, the actual 

defect count of an artifact is unknown. So, it is not clear what 

effect the use of seeded defects had on the estimation results. 

There is little evidence to support the efficacy of using CR models 

in real   software development (with an unknown number of 

naturally occurring defects). Moreover, the empirical studies until 

now have focused on a few selected estimators for each CR model 

type. A more detailed analysis of all the available estimators for 

each CR model is needed. 

This paper performs a comprehensive evaluation of CR models 

and their estimators on real software artifacts that contain natural 

defects made during their development. The artifacts were 

inspected two times; and we evaluate the performance of the CR 

models and estimators after each inspection cycle. We compare 

the performance of the estimators and choose the best model. We 

also analyze the ability of the CR models to accurately predict the 

need for a re-inspection. Finally, the findings from this study are 

compared with findings from previous research in software 

engineering and biology.  

Section 2 describes the CR models and their application to 

inspections. Section 3 discusses the background literature that 

inspired this study. Section 4 describes the design of the study. 

Section 5 describes the data analysis and results. Section 6 

discusses the threats to validity. Section 7 discusses the relevance 

of the results and compares the results with previous results in 

software engineering and biology. Section 8 concludes the study. 

2. USE OF CAPTURE-RECAPTURE IN 

SOFTWARE INSPECTIONS  

CR models in biology and wildlife research make certain 

assumptions, and only some of them are met in software 

inspections. The assumptions made by CR models that hold for 

software inspections are: a) Closed population: All inspectors 

work independently, inspect the same artifact, and the artifact 

remains unchanged during the experiment, and b) Defects are 

recorded on defect lists and maintained to make distinction 

between captured and recaptured defects. However, the 

assumption regarding equal capture probability is not satisfied [2, 

16, 22]. In software inspections, inspectors can have different 

defect detection abilities (based on their difference in background 

education, training, or innate ability) and defects can have 

different detection probabilities (as some defects are easier to 

locate than others) [2].  

To accommodate these variations, four CR models, each with 

different sources of variation, are shown in Table 1. These models 

were originally developed by biologist [15, 22], and have been 

used in previous empirical studies in software inspections [2, 8-9, 

13, 16, 17-18, 21, 24]. These studies are discussed in detail in 

Section 3. 

Furthermore, each CR model in Table 1 has different estimators. 

Each estimator uses a different statistical approach to produce the 

population estimate. The estimators used in this study are shown 

in Table 2 along with the associated CR model from Table 1. 

Some of the estimators have been used in previous studies, while 

others are used here for the first time in the software inspection 

domain (those marked with *). The mathematical details of the 

estimators are beyond the scope of this paper. More details about 

each CR estimator can be found in the provided references.  

All of the CR estimators use the data organized in the same way 

for computing their estimates i.e., a simple matrix with rows 

representing defects and columns representing inspectors. An 

entry in the matrix is 1 if the defect was found by the inspector 

and 0 otherwise. Each estimator can derive all the other required 

statistics from this matrix to estimate the defect population [2, 15, 

22]. 

3. EMPIRICAL STUDIES OF CAPTURE-

RECAPTURE MODELS IN SOFTWARE 

INSPECTIONS 

Eick et al., proposed the use of CR for software inspections and 

performed the first study of CR models in software inspections. 

They used the maximum likelihood estimator (MLE) for the Mt 

model to estimate the defects remaining in real requirements and 

design documents at AT&T. The defects were naturally occurring 

and not seeded. The results showed that the estimates of 

remaining defects were similar to the subjective opinions of the 



developers. Based on the inspection results in their environment, 

Eick et al., recommended that an artifact be re-inspected if the 

number of remaining defects is greater than 20 percent of the total 

[8, 9]. This recommendation is still used by CR studies. With the 

introduction of new estimators, other empirical studies were 

performed to evaluate and improve them.  

Among those early efforts, Weil and Votta used artifacts with 

seeded defects to compare the performances of the MLE estimator 

for the Mt model and the Jackknife (JK) estimator for the Mh 

model when their assumptions were violated. The authors tried to 

improve the accuracy of these estimators by suggesting a 

grouping method. The result showed that the MLE estimator was 

more accurate than the JK estimator, with and without grouping 

[21]. Wohlin et al., also suggested an improvement to MLE 

estimator and evaluated it on a text document with seeded defects. 

Contrary to earlier findings, the results showed that the MLE 

estimator overestimated the number of defects. However, this 

study was done with a non-software engineering artifact [23, 24]. 

Later on, Briand et al., evaluated a series of CR models using data 

generated from the inspection of artifacts with seeded defects by 

NASA software professionals. The result from this study showed 

that the estimators generally underestimate the number of defects, 

and recommended using the JK estimator. The result also showed 

that a minimum of four inspectors are needed for achieving 

satisfactory estimates [2]. This study was later replicated and 

confirmed that the Mh model is the superior model and 

recommended the JK estimator [13]. 

Emam et al. evaluated CR estimators for two inspectors using 

artifacts with seeded defects and analyzed their ability to 

accurately determine the need for re-inspection. The results 

showed that Mh-JK and Mt-Ch are the best estimators, and that 

not all estimators helped in making correct decisions on re-

inspections [11]. Emam, et al., also advocated the use of the 

inspectors’ subjective opinions along with the CR estimates when 

the models are used during real development (i.e., when the actual 

defects are unknown rather than seeded) [10]. Another study 

evaluated the CR methods using artifacts with seeded defects and 

advocated the use of confidence interval coverage rather than 

point estimates for achieving more trustable estimates. 

Conversely, this study showed that the subjective estimates are 

significantly less accurate than the CR estimates [18].  

Previously, we reported on a study concerned with the effect that 

increasing the number of inspectors has on the quality of the CR 

estimates, using a software artifact with seeded defects. A major 

result from this study was the identification of the minimum 

number of inspectors required for achieving different levels of 

estimation accuracy [20]. Other researchers (e.g., Runeson, 

Thelin, and Wohlin, et al.,) have conducted similar CR studies to 

evaluate the CR estimators with defects (real or artificial) seeded 

into artifacts before inspection, and can be referred from a list of 

all the CR studies conducted over ten years (1992-2002) of the 

research in software inspections [16]. Analysis of these studies 

acknowledged the fact that the major results regarding the 

evaluation of CR models are derived from studies conducted on 

the artifacts with seeded defects.  

To summarize, the major results from the evaluation of CR 

models in software inspections include: a) a consensus that Mh is 

the best model and Mh-JK is the most accurate estimator, b) 

estimators generally underestimate, but improve with more 

defects and inspectors, c) a minimum of four inspectors are 

required for achieving satisfactory estimates, and c) there is no 

consensus on the relative accuracy of subjective and objective 

estimates. 

4. STUDY DESIGN 

The earlier CR studies evaluated the four basic models and some 

of their estimators. A major difficulty when evaluating CR models 

is that the number of actual defects is not known beforehand. 

Therefore, many researchers have used seeded defects to allow for 

comparisons of the estimates to the actual value (i.e., number of 

seeded defects). Accordingly, the major findings and 

recommendations are based on inspections using artifacts with 

seeded defects. No empirical study has comprehensively 

evaluated the CR models in a case where the number of defects is 

not known beforehand, as would be the case with any real 

development. 

Furthermore, software reliability research has shown that seeded, 

artificial defects differ in detection probability from naturally 

occurring defects and are easier to detect. Even when re-seeding 

real defects, their densities differ from that of natural occurring 

defects [14]. Therefore, the nature of the defects can influence the 

estimation results. To provide better information for project 

managers and inspectors to use when deciding on the adoption of 

CR models in their organization, it is important to evaluate the CR 

models in real settings. 

This paper describes a comprehensive evaluation of CR models 

and their estimators on real software artifacts that were developed 

by students in a senior-level capstone software engineering class 

(i.e. they were created to guide the later implementation of the 

system) with naturally occurring defects, and later inspected in the 

same environment. In addition, each artifact was inspected twice, 

which allowed the analysis of the CR estimator’s ability to make 

correct recommendations about the need for re-inspection. The 

findings from this study are then compared with the earlier 

findings to gain more insights. 

4.1 Goal(s) of the Study:  
The main goal of this study is to evaluate the CR models and 

estimators on real software artifacts with naturally-occurring 

defects, and number of actual defect count not known beforehand. 

More formally, the goal is to: 

Analyze the CR models and estimators 

For the purpose of evaluation  

With respect to the ability to estimate the number of 

remaining defects 

From the point of view of project managers and inspectors 

In the context of a real requirements document 

  

4.2 Data Set 

The data for the CR analysis was drawn from earlier inspection 

studies conducted at Mississippi State University (MSU). The 

goal of those studies was to investigate the use of human errors 

(i.e., mistakes in the thought process) committed during 

development for improving the quality of the software artifact 

[19]. Only the information relevant to the CR analysis is provided 

here.   

4.2.1 Software Artifacts and Software Inspectors 



Table 3. Artifacts, and Inspectors used in this Study 

 

Artifact 

 

Name 

 

Description 
Number of 

Inspectors 

1st  

Inspection 

Defects 

2nd 

Inspection 

Defects 

Total 

Defects 

A Starkville 

theatre system 

Management of ticket sales and seat 

assignments for the community theatre 

8 30 25 55 

B Management of 

apartment and 

town properties 

Managing apartment and town property, 

assignment of tenants, rent collection, 

and locating property by potential renters 

8 41 64 105 

C Conference 

management 

Helping the conference chair to manage 

paper submission, notification of results 

to authors, and other related 

responsibilities 

6 52 42 94 

D Conference 

management 

(Same as C) 6 64 54 118 

 

Inspection data from four software artifacts is used in this study. 

The artifacts were developed by senior-level undergraduate 

students, majoring in either computer science or software 

engineering enrolled in the Software Engineering Senior Design 

Course at MSU during the Fall 2005 and Fall 2006 semesters. The 

course required students to interact with real customers, elicit, and 

document requirements that they would later implement. So, even 

though the developers are students, the artifacts are realistic for a 

small project. The subjects were divided into 4 teams (with 8, 8, 6, 

and 6 students respectively) that developed the requirement 

documents for their respective systems as shown in Table 3. (Note 

that even though artifact D has the same description as artifact C, 

it was a different set of requirements created by a different set of 

subjects.) Each artifact was then inspected independently by the 

same developers who created it [19].  

4.2.2 Software Inspection Process 
The goal of the original experiments was to investigate the 

usefulness of error information in software inspections as opposed 

to just using fault information. The inspection process consisted of 

having each inspector inspect the artifact using a simple fault 

checklist and log the faults. After that, training was provided on 

how to abstract errors from faults, how to classify the errors, and 

how to use the errors to re-inspect the requirements document for 

more faults. The same process was used to inspect all four 

artifacts. Note that the artifacts were not modified or corrected 

between inspections (i.e. the same artifact was re-inspected). 

Therefore, we have inspection data from first inspection, the 

second inspection, and total for each artifact. Note that the last 

three columns in Table 3 show total unique defects found during 

the first inspection, unique defects found during the second 

inspection (different from the defects found during the first 

inspection), and total defects for both inspections (the sum of the 

defects from the first and second inspection) respectively. 

Because the same process was used for all four artifacts and the 

subjects were all drawn from the same population, the CR 

analysis combines the inspection data from all the four artifacts 

into one large dataset for evaluating the CR models and their 

estimators. Because each artifact had a different number of 

defects, the analysis in this paper focuses on percentages of 

defects found to normalize the data.  

4.3 Experiment Procedure 

To evaluate the CR models and estimators after each inspection, 

we used two automated tools (CAPTURE [10] and CARE [3]) to 

calculate the estimates for each of the fourteen estimators as 

follows: 

a) Calculate estimates after first inspection: For each artifact, 

the defects found during the first inspection (column 5 of 

Table 3) by all inspectors are inserted into a matrix (as 

described in Section 2). This matrix is then fed to the 

automated tools to produce the estimates for all the 

estimators. Using the estimated defect count and the number 

of unique defects found at first inspection, the number of 

remaining defects can be estimated.  

b) Calculate estimates after second inspection: Because the 

artifacts were unchanged between inspections, to calculate 

the estimates after second inspection, we use the total defects 

found from both inspections (column 7 of Table 3). It did not 

make sense to use only the data from inspection 2 because 

some information would have been excluded making the 

estimates inaccurate. Therefore, for each artifact, the defects 

found at the first and second inspection by all inspectors are 

inserted into a matrix. The matrix is then fed to the 

automated tools to produce the estimates from all the 

estimators. Using the estimated defect count and the number 

of defects found after both inspections, the remaining defects 

after second inspection is estimated.  

 

4.4 Evaluation Criterion 

The estimators are evaluated based on their performance after the 

first and second inspection using these parameters: accuracy 

(bias), precision (variability), and failure rate. 

The accuracy (bias) is measured as the relative error (R.E) of an 

estimate. It is calculated as: 

 

Relative error = (Estimated number of defects – Actual number 

of defects) / Actual number of defects 

 

A R.E of zero means absolute accuracy. A positive R.E. means an 

overestimation. A negative R.E means an underestimation.    R. E 

threshold of +/- 20% is considered satisfactory for estimates. 



 
Figure 1. Relative error in estimates after first inspection 

 

 
Figure 2. Relative error in estimates after second inspection 

 

Because we do not know the actual number of defects, the total 

number of exclusive defects found after both inspections is 

assumed to be the actual defect count for the purposes of this 

study. The difference between the estimated defect count and this 

actual defect count is used to evaluate the accuracy of CR 

estimators. Furthermore, the error in the estimates is calculated 

relative to each artifact to allow for combination of the results 

from all the artifacts. 

The precision (variability) of an estimator is measured by 

calculating the inter-quartile range (IQR), the outliers, and the 

extreme outliers. 

The failure rate is the number of times an estimator fails to 

produce an estimate. 

5. DATA ANALYSIS AND REPORTING 

RESULTS 

This section first compares the estimates produced after the first 

inspection and the second inspection. Then, it analyzes the best 

CR model. Finally, it discusses how to use the CR estimators to 

manage the inspection process. An alpha value of 0.1 is selected 

in this initial study, because there are only four data points (four 

artifacts).  

5.1 Comparison of the Estimates after One 

and Two Inspections 

The performance of the CR estimators is compared after the first 

and second inspection based on the relative error values. Figure 1 

and Figure 2 show the accuracy and precision of the each 

estimator after the first inspection and after the second inspection 

respectively. Figures 1 and 2 partition the relative error values 

into different regions: the solid line represents absolute accuracy 

(0 biases), the lower dashed line is a 20% underestimation, and 

the upper dashed line is a 20% overestimation. Important 

observation from Figures 1 and 2 are:  

a)   In terms of accuracy, there is a general trend that the CR 

estimators underestimate the defect count after first 

inspection as most estimators fall below the 0% line and 

many fall below the -20% region. There is also a general 

trend that the CR estimators overestimate the defect count 

after the second inspection, but, most of the estimates (except 

Mh-JK) fall within the acceptable range of 0%-20%. In 

addition, the estimators for Mh and Mth models are generally 

less biased than the estimators for the Mo and Mt models at 

both inspection cycles (except for the Mh-JK estimate after 

the second inspection).   

b)   In terms of precision, the estimators of Mo and the Mt models 

are generally more precise (less variation) than estimators 

from the Mh and the Mth models after the first inspection and 

after the second inspection. Also, the estimators are more 

accurate and precise after second inspection than after the 

first inspection. 

c)   In terms of the failure rate of an estimator, Mth-EE failed to 

produce an estimate for artifact C at the first inspection. No 

other estimator showed any failure. 

For each estimator, the relative error after the first inspection was 

statistically compared with the relative error after the second 

inspection to determine whether there was any significant 

improvement. For this analysis we were focused on the magnitude 

of the relative error and therefore overestimation and 

underestimation were treated equally. The results from a 2-tailed 

paired samples t-test show a significant improvement in the 

estimation accuracy for all the estimators after second inspection 

over the estimates after first inspection.  

 

5.2 Selection of the Best Capture-Recapture 

Model 
This study includes four CR models with different estimators for 

each model: three estimators each for Mo and Mth models and four 

estimators each for Mh and Mt models. This section analyzes the 

best model(s) to use in software inspections based on the 

estimates after the first inspection and after the second inspection. 

We select the best model(s) using the selection procedure (with 

little modification because of no outliers in our data) originally 

used by Briand et al., [2], explained as follows. 

a) First, the best estimator for each model is selected. To choose 

the best estimator, a 2-tailed paired samples t-test is used to 

compare the relative error values for the four artifacts (to 

analyze the direction of improvement and its significance). 

For each model type, each estimator is compared against 



every other estimator to select the best estimator for that 

model. If the t-test does not show significant results in spite 

of the difference in their mean relative bias values, then the 

Wilcoxon test is performed (as this test is more powerful 

under certain situations and can test variability in the 

estimates). If there is still no statistically best estimator, the 

estimator with least mean relative error is chosen as the best 

estimator. 

b) After selecting the best estimator from each model, the 

models are compared using 1-tailed t-test to select the best 

model (major source of variation). We use 1-tailed t-test to 

test the hypothesis that more sources of variation 

significantly decreases the bias in the estimate, i.e., Mth (with 

two sources of variation) is better than Mt and Mh (with one 

variation source), which in turn are better than Mo (with no 

variation).   

For both statistical tests, an alpha value of 0.1 is selected. This 

procedure is conducted separately after the first inspection and the 

second inspection as shown in Figure 3 and Figure 4 respectively. 

In these figures, the nodes represent the best estimator selected 

from each model and the lines represent the relationship between 

models with the arrow pointing towards the better model. The p-

value represents the statistical significance of the improvement 

(double bold lines indicate significant improvement). 

 

5.2.1 Selection of the Best Capture-Recapture Model 

after First Inspection 
For the Mo model, the results from the 2-tailed t-test show that 

CMLE is the best estimator. For the Mt, model, the results show 

that Chao is the best estimator. For the Mh model, the results from 

the t-test and Wilcoxon tests do not show any difference among 

the EE, Ch, and JK estimators. We selected the JK estimator 

because it had the smallest mean relative bias. Finally, Chao was 

selected the best estimator for Mth type model based on the results 

of the t-tests. 

 

Figure 3, then, shows the results of the process for selecting the 

best model after the first inspection. The results from the 1-tailed 

t-test show that the Mt, Mh, and Mth models are an improvement 

over the Mo model, but this improvement is only significant for 

the Mh and Mth models. Therefore, the model Mt is not a 

significant improvement over Mo model. Furthermore, the Mth 

model is also a significant improvement over the Mt model, but 

not a significant improvement over the Mh model. Although Mh 

model is better than the Mt model, there is no significant 

difference between the Mh and Mt type models. Based on the 

number of arrows pointing towards a model, the Mth is chosen as 

the best model for the first inspection.  

5.2.2 Selection of the Best Capture-Recapture Model 

after Two Inspections 
For the Mo model, the results showed that EE and UMLE are the 

best estimators, with no significant difference among them. We 

selected M0-EE as the best estimator due to its smallest mean 

relative error. For the Mt model, the results from the t-test show 

that Chao is the best estimator. For the Mh model, the results show 

that SC and Ch are the best estimators, with no significant 

difference among them. We selected Mh-SC as the best estimator 

due to its smallest mean relative bias. Again, the Mth model results 

showed that SC and EE are the best estimators, with no significant 

difference among them. We selected Mth-SC as the best estimator 

because of its smallest mean relative bias. 

Figure 4, then, shows the results of the selection process for the 

best model after the second inspection. The results show that the 

Mt, Mh, and Mth models show significant improvement over the 

Mo model, which is expected (models with any source of 

variations are expected to be better than model with no source of 

variation [15]). However, both the Mt and Mh models show a non-

significant improvement over the Mth model, which was 

unexpected. Based on the results in Figure 4, the model with two 

sources of variation (Mth model) is no better than models with one 

source of variation (Mh and Mt models). On the contrary, the Mt 

and Mh models showed an improvement over Mth model, even 

though the improvement is not significant. This result also 

contradicts the earlier finding that the Mth model is better than 

other models when there are a large number of defects and 

inspectors [2]. Furthermore, there is no significant improvement 

between the Mt and Mh models. Based on the number of arrows 

pointing towards a model, the Mh model is chosen as the best 

model after the second inspection.  

 

Combining the results from Figures 3 and 4, we can make 

following observations: 

a) Model with two sources of variation do not always show an 

improvement over models with one source of variation, but 

always show significant improvement over a model with no 

sources of variation. 

b) The models Mh and Mth are a significant improvement over 

M0 model, whereas the model Mt does not always 

significantly improves over the Mo model. 

Mo-EE 

Mt-Ch Mh-SC 

p=0.005 

p=0.26 p=0.40 

p=0.07 

p=0.05 

Mth-SC 

p=0.24 

Figure 4. Best model (s) after second inspection 

Mo-CMLE 

Mt-Ch Mh-JK 

Mth-Ch 

p=0.12 

p=0.11 p=0.06 

p=0.07 

p=0.005 

p=0.22 

Figure 3. Best model (s) after first inspection 



 
Figure 5. Estimated remaining defects after the first 

 inspection 

 

 
Figure 6. Estimated remaining defects after the second 

inspection  

c) Neither of the models with one source of variation (i.e. Mt 

and Mh) is significantly better than the other. 

d) There are no general trends in the selection of the best 

estimator for each model type (except Chao estimator for the 

Mt model).  

 

5.3 Using the CR Models to Manage the 

Software Inspections 

A major thrust of this study is to investigate whether project 

managers can trust CR estimates to manage inspection of software 

artifacts in real-time. Accordingly, this section analyzes the ability 

of the CR estimators to provide insight into the quality of the 

software artifacts. To accurately manage the inspection process, 

the decision about whether to re-inspect an artifact based on the 

CR estimates after the first and the second inspection is also 

evaluated. Since we do not know the actual number of defects in 

the artifacts, the inspectors’ subjective estimates are also analyzed 

to gain more insights into the results. 

The estimates of defects remaining in an artifact help in deciding 

when to stop the inspection process. We first compare the 

estimated remaining defects after first inspection and then, after 

the second inspection with the 20% threshold to make a decision 

on the need for re-inspection (i.e., if the defects remaining are 

greater than 20%, a re-inspection is needed).  

As in actual development, CR models are used to estimate the 

remaining defects after an inspection using data only from that 

inspection. Accordingly, we estimate the remaining defects after 

first inspection without using the defect information from second 

inspection. The percentage of remaining defects after an 

inspection is calculated for each estimator as: 

Relative estimate of remaining defects = (Estimated total 

defects - defects captured during an inspection) / Estimated 

total defects  

For example, for artifact A and Mo-CMLE estimator, the number 

of defects remaining after first inspection are;   

Remaining defects =     39(estimated defects) – 30 (found) 

                                   39 (estimate total defects) 

                         = .23 (i.e., 23% of defects remain) 

The estimates of the remaining defects are done relative to each 

estimator, and the estimates from all the 14 estimators are used to 

compute the median and range of the percentage of remaining 

defects for each artifact. Figure 5 compares the percentage of 

remaining defects for all artifacts after the first inspection (the 

dotted line shows the 20% threshold). Figure 5 also shows the 

actual percentage of additional defects found during the second 

inspection for each artifact to give an indication of the accuracy of 

the estimates after the first inspection. 

After the first inspection, the median estimated remaining defects 

for all the artifacts is greater than 20%, while some estimators 

estimated 40% or more remaining defects for artifacts B, C, and 

D. The estimates indicate the need for a re-inspection of all 

artifacts. The actual data from the second inspection showing the 

percentage of the additional defects found during re-inspection 

(A- 45%, B- 43%, C- 45%, D- 46%) supports this decision. 

During the original study, the CR models were not used, so the 

only data which was available to decide on a re-inspection was the 

subjective opinions of the inspectors. In this case, the subjective 

opinion of developers supported the recommendation of the CR 

estimators. The inspectors for each artifacts felt that there were 

defects remaining after first inspection and so a re-inspection was 

performed. Similarly, the number of remaining defects after the 

second inspection is estimated relative to each estimator using the 

defect data from both inspections.  

For example, for artifact B and Mt-Ch estimator: 

Remaining defects =     91(estimated defects) – 81(found) 

                                  91 (estimate total defects) 

                         = .11 (i.e., 11% of defects remain) 

The percentage of estimated remaining defects after the second 

inspection for each artifact is shown in Figure 6. After the second 

inspection, the median estimate of remaining defects as well as 

extreme outliers for all the artifacts never exceeds the 20% 



threshold. There is some variation in the estimates for artifacts C 

and D, but none of the estimate exceeds 20%. The results indicate 

that there is no need for further re-inspections for any of the 

artifacts; and the inspection process should be stopped.  

The inspectors’ subjective opinion regarding the remaining 

defects after the second inspection (which was all that was 

available during the original study) supported the 

recommendation of the CR estimates. The inspectors agreed that 

they had located all the defects present in the artifact during 

second inspection, ruling out any need of further inspection. So, 

the inspection process was stopped.  

Combining the results from Figure 5 and 6, the CR estimates is 

helpful to managers for deciding on the need of re-inspection 

under realistic inspection conditions. 

6. THREATS TO VALIDITY 

In this study, there were some threats to validity that were 

addressed. The artifacts used in this study are real software 

artifacts that were later used to guide implementation. The defects 

were naturally occurring and inserted while developing the 

artifacts rather than artificially seeded. The subjects were 

provided an equal amount of time to perform the first and second 

inspection, thereby avoiding any bias.  

However, there were some threats to validity that were not 

addressed. First, the actual number of defects present in each 

document is not known and might actually be higher than the 

assumed defect count (i.e., the total number of defects found after 

two inspections). This threat especially affects the evaluation of 

the prediction after the first inspection. A second threat was the 

artifacts used in this study were developed by student teams in a 

senior-level capstone course, and it may not be a representative of 

industrial strength requirement documents. Also, the nature of 

faults committed by students during development can differ from 

the faults made by software professionals.   

7. DISCUSSION OF RESULTS 

This section discusses the major findings and recommendations 

about the CR models and estimators for achieving reliable 

estimates. The major findings from this study are compared with 

the earlier findings from software engineering and biology. 

7.1 Summary of Major Findings 

Quality of estimates: As expected, the number of defects 

influences the quality of estimates. The estimates are highly 

negatively biased after first inspection and become positively 

biased after second inspection as more defects are found. The 

improvement is statistically significant for all the estimators. 

Considering the fact that there might be more defects remaining 

after second inspection, that were not included in the analysis, the 

estimates may actually be more negatively biased after first 

inspection and less positively biased after second inspection. In 

addition, the precision and the failure rates of the estimators also 

improve after the second inspection. However, contrary to earlier 

findings, Mh-JK is not the best estimator. In this study, Mh-JK 

overestimated compared with other estimators after both 

inspection cycles. This overestimation was unsatisfactory after the 

second inspection. Although, because we do not know how many 

defects actually remain after the second inspection, it is possible 

that Mh-JK has not overestimated.  

The best capture-recapture model: We tested the hypothesis that: 

Mth model with two sources of variation (varying inspector 

abilities and varying defect detection probabilities) is significantly 

better than models Mt (varying inspector abilities) and Mh 

(varying defect detection probability) with one source of 

variation, which in turn are significantly better than Mo model 

with no variation. Using the estimates from the first inspection 

alone, the result did not followed this trend since the Mth model 

did not show a significant improvement over Mh model, and the 

Mt model did not show a significant improvement over Mo model. 

The results are even more unexpected after the second inspection, 

as there is no significantly better model between the models with 

one source of variation (Mt and Mh) and the model with two 

sources of variation (Mth). In summary, Mth is the best model after 

the first inspection whereas Mh is the best model after the second 

inspection. Therefore, defect detection probability is always a 

source of variation, while the inclusion of varying inspector 

ability does not always improve the estimation. However, there is 

no general trend regarding the best model under all cases. Lastly, 

no particular estimator for each model type outshines other 

estimators all the time. 

Determining quality of a software artifact: The results show that 

the CR estimators can help managers accurately decide on the 

need for re-inspection of an artifact. Some estimators can 

underestimate the actual defect count and hence, the remaining 

defects in an artifact. It is therefore recommended that all the 

estimators are used. Then analyze the median and variability in 

the estimates of remaining defects. If any data point exceeds the 

20% mark, then re-inspection should be considered. The results 

also show that the subjective estimates are similar to objective 

estimates if the inspectors are same people who developed the 

requirements because they can provide much better assessment. It 

is not clear how the subjective estimates would differ if the 

inspectors were not involved in the artifact development. This is a 

future research issue that must be investigated. 

7.2 Comparison with Previous Findings in 

Software Engineering and Biology 

Table 4 compares the major findings from this study with earlier 

research findings from software engineering and biology and 

wildlife research. The findings from this study support some of 

the previous findings, while they contradict some others, and 

provide some additional insights.  

The findings from software engineering and biology that are 

consistent with our findings are: 1) CR estimates improve as more 

defect data is fed to them, 2) The Mth model does not improve 

significantly over Mh model, and 3) The Mh-JK estimator 

overestimates with less overlap of recaptured defects. 

Some of the findings in this paper that contradicts the earlier 

findings are: 1) There is no significant difference between Mh and 

Mt models, 2) The Mt model is not always a significant 

improvement over Mo model, 3) There is no best estimator for all 

the CR model all the times, and 4) It is not always true that 

models with more sources of variations are significantly better. 

Some of the findings reported in this paper were new. The 

jackknife (JK) estimator always overestimates in comparison to 

all the other 13 estimators used in this study.  Also, a relatively 

new result showed the ability of the CR models to accurately 

decide the need for re-inspection of software artifacts in real-time 

development. The subjective opinion of the inspectors (also used 



Table 4. Comparison of Findings 

S. No Our Study Software Engineering Biology and Wildlife 

1. CR estimators highly underestimate the defect 

count after the first inspection, and the 

estimates are significantly more accurate and 

precise after the second inspection.  

The CR estimators underestimate 

the actual number of defects, and the 

estimates improve with more 

defects, and inspectors [16, 20, 21] 

All models generally 

underestimate but estimates 

improve with more trapping 

occasions and animals, Failure rate 

is high only for few inspectors [15, 

12, 22] 

2. Mh-JK overestimates after each inspection 

compared with the other estimators and the 

overestimation increases with decreasing 

defect overlap. 

Studies show that Mh-JK 

overestimates if the overlap of 

defects among inspectors is small [2, 

16, 20] 

Mh- JK severely overestimates in 

case of few trappings, but provide 

good estimates if the overlap of 

animals caught at different 

trappings is large [6, 22] 

3. Mth is the best model after the first inspection 

whereas Mh is the best model after the second 

inspection; the defect capture probability is 

one definite source of variation 

A large number of studies indicate 

that the Mh is the best CR model, 

and defect capture probability is a 

major variation source [2, 13, 16] 

Mh show significant improvement 

over Mt models, while Mth models 

do not show improvement over Mh 

models [12, 22] 

4. We contradict that Mh-JK is the best 

estimators as it do not always produce the best 

results 

Studies show that Mh-JK is the best 

estimator with four or more 

inspectors [2, 13, 16] 

Mh-JK produces good estimate 

especially if many animals are 

recaptured a lot of times [3, 15, 

22]. 

5. There is no general trend in the best estimator 

for each model. Different estimators for each 

model type are best at first and second 

inspections. 

UMLE is the best estimator for Mo 

model, Ch is best for Mt and Mth 

model, Ch and JK are best for Mh 

model [2], SC for Mh and Mth are 

best estimators [20].  

MLE estimators for Mo and Mt 

type models produce highly 

inaccurate estimates as compared 

to Mh models [15] 

6. Results from this study do confirm that the Mth 

model is not always a significant improvement 

over Mt and Mh models, and is always a 

significant improvement over Mo model. We 

reject that Mt is always a significant 

improvement over Mo, and that the Mh model 

is significantly better than the Mt model. 

A general trend is that the more 

sources of variations, the better the 

model [13, 16], Model Mh is more 

usable than Model Mt, while Mth 

does not always significantly 

improves over Mh [2]. 

A general trend is that the more 

sources of variations, the better 

the model, but Mth does not 

always significantly improves 

over Mh  [15, 22] 

7. CR estimators can provide accurate 

information about whether or not to stop the 

inspection process. 

CR estimators are not always 

accurate in deciding whether to re-

inspect [11]. 

Not Applicable 

8.  The inspectors’ subjective estimates match the 

CR estimates when the inspectors are same 

people as the developers.  

Some studies show similarities 

between the subjective and objective 

estimates, while others show a 

significant difference [10, 18]. 

No Result 

 

in this study) matched with the CR estimates when the inspectors 

are same as developers.  

7.2 Relevance to Software Organizations 

The CR models have been widely used in the academic context, 

but hardly in industrial settings. Our earlier research efforts 

analyzed the inspection defect data from Microsoft Corporation to 

determine the minimum number of inspectors required to achieve 

different levels of estimate accuracy [20]. This information 

benefits project managers to plan and manage the inspection 

process. Similarly, the results in this paper encourage 

organizations to use the CR models in order to manage software 

inspections to achieve their desired software quality standards. 

The results in this paper add some more support to the view that 

the CR models are usable by mangers to make correct re-

inspection decisions during software development practice. 

Project mangers can use the results about the CR models and 

estimators to make an informed decision on the need for re-

inspection. Indeed, a lot more research is needed to back these 

results. The major future research issues are addressed in the next 

section.   

8. CONCLUSION AND FUTURE WORK  

Based on the results provided in this paper, project managers and 

software developers can use the CR models and estimators in 

software organizations to manage software inspections and 

achieve the desired artifact quality. We have evaluated the 

estimators based on a +/-20% threshold. Project managers can 

interpret these results using the specific quality criterion of their 

organization. In addition, the cost-effectiveness of a re-inspection 

should be considered in conjunction with the estimates of 

remaining defects.  

The results showed that the number of defects and the overlap of 

defects among inspectors influence the performance of estimators. 

Our future work in this area includes analyzing the effect of the 



number of defects and the overlap of defects using this data set by 

varying the number of defects and the number of inspectors. An 

optimal number of defects and inspectors would provide more 

information to project managers and software developers in 

conducting effective software inspections. We also want to 

analyze the influence of the inspection technique effectiveness 

and other important variables on the performance of the CR 

estimators. 
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