
Evaluation of Capture-Recapture Models
for Estimating the Abundance of Naturally-Occurring

Defects

Gursimran Singh Walia
Mississippi State University
300 Butler Hall, Box 9637

Mississippi State, MS 39762
+1 662-325-8798

gw86@cse.msstate.edu

Jeffrey C. Carver
University of Alabama

101 Houser Hall
Tuscaloosa, AL 35487

+1 205-348-9829

carver@ca.ua.edu

ABSTRACT
Project managers can use capture-recapture models to manage the

inspection process by estimating the number of defects present in

an artifact and determining whether a reinspection is necessary.

Researchers have previously evaluated capture-recapture models

on artifacts with a known number of defects. Before applying

capture-recapture models in real development, an evaluation of

those models on naturally-occurring defects is imperative. The

data in this study is drawn from two inspections of real

requirements documents (that later guided implementation)

created as part of a capstone course (i.e. with naturally occurring

defects). The major results show that: a) estimators improve from

being negatively biased after one inspection to being positively

biased after two inspections, b) the results contradict the earlier

result that a model that includes two sources of variation is a

significant improvement over models with one source of variation,

and c) estimates are useful in determining the need for artifact

reinspection.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications,

D.2.4 Software/Program Verification, D.2.8 Metrics, D.2.9

Management, and K.6.3 Software Management.

General Terms
Management, Measurement, Documentation, Experimentation,

Human Factors, Verification

Keywords
Software Inspections, Capture-Recapture Models, Defect

Estimation, Requirements, Validation and verification, Empirical

Study

1. INTRODUCTION
Software inspections are an effective approach to improve quality

by locating defects early and avoiding their propagation to

subsequent phases. However, inspections can only provide

information about the defects that are detected and not about those

that have yet to be detected. Therefore, to make a decision about

the need for re-inspection, developers tend to assume that if a

large number of defects were found during the inspection, then a

large number probably remains in the document [1]. Because an

inspection requires the use of limited resources, Informed,

objective estimates of the remaining defects should guide this

decision, rather than the subjective estimates or historical trends

of the remaining defects.

During software development, project managers and developers

need to be able to estimate the number of defects still remaining in

the document. Reliable estimates of the remaining defects after an

inspection can help managers decide whether to perform a re-

inspection or to pass the artifact through to the next phase. Among

the different approaches used to make this estimate (e.g., defect

density, subjective assessment, historical data, capture-recapture

method, curve fitting method), capture-recapture is the most

appropriate and widely used method [2, 10].

Capture-Recapture (CR) is a statistical method that was originally

developed by biologists to support population size estimates. CR

is used in biology by capturing fixed number of animals and

marking them as captured. The marked animals are then released

back into the population and allowed time to re-mix. Then another

trapping occurs. Any marked animals that are captured at the

second trapping are said to be recaptured. The total number of

animals in the population is estimated based on the number of

marked animals that are recaptured. More recaptures indicates a

smaller estimated population [15, 22].

Using the same principle, the CR method can be used to estimate

the number of defects in a software artifact. During an inspection,

each inspector finds, or captures, some defects (analogous to

trapping animals). If the same defect is found by another inspector

(analogous to another trapping occasion), it is said to be

recaptured [2, 8]. The number of defects found and the overlap of

defects among inspectors during an inspection is used to estimate

the total number of defects present in that artifact. Similar to

biology, larger overlap results in a smaller and more precise

estimate. The difference between the estimated number of defects

and number of defects actually found provides insight into the

number of defects remaining. The CR method makes use of

© ACM, (2008). This is the author's version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2nd ACM-IEEE

International Symposium on Empirical Software Engineering and

Measurement, Oct 9-10, 2008.
http://doi.acm.org/10.1145/1414004.1414031

mailto:gw86@cse.msstate.edu
mailto:carver@ca.ua.edu

Table 1. CR models

Model Source of Variation(s)

Mo Inspectors are equal in their defect detection

ability and defects have equal detection

probability

Mt Inspector varies in their defect detection

abilities and defects are equally detectable

Mh Defects varies in their defect detection

probability and inspectors are equally able

Mth Inspectors differ in defect detection ability, and

defects differ in detection probability

Table 2. CR estimators

Models Estimators

Mo

Unconditional Maximum Likelihood Estimator

(Mo-UMLE) [15]

*Conditional Maximum Likelihood Estimator

(Mo-CMLE) [7]

*Estimating Equations Estimator (Mo-EE) [25]

Mt

Unconditional Maximum Likelihood Estimator

(Mt-UMLE) [15]

*Conditional Maximum Likelihood Estimator

(Mt-CMLE) [7]

*Estimating Equations Estimator (Mt-EE) [25]

Chaos Estimator (Mt-Ch) [4]

Mh

Chaos Estimator (Mh-Ch) [5]

Jackknife Estimator (Mh-JK) [3]

*Sample Coverage Estimator (Mh-SC) [12]

*Estimating Equations (Mh-EE) [25]

Mth
*Sample Coverage Estimator (Mth-SC) [12]

*Estimating Equations Estimator (Mth-EE) [25]

Chaos Estimator (Mth-Ch) [5-6]

different types of models (with varying assumptions), each with a

different set of estimators (described in more detail in Section 2).

Biologists have comprehensively evaluated the use of CR models

[15, 22], but their use and evaluation in software engineering is

relatively new. Most empirical studies in software engineering

have evaluated the use of CR models on software artifacts with a

known number of seeded defects [2, 8, 9, 10, 11, 13, 16, 17-18,

20-21, 23-24]. However, in live software development, the actual

defect count of an artifact is unknown. So, it is not clear what

effect the use of seeded defects had on the estimation results.

There is little evidence to support the efficacy of using CR models

in real software development (with an unknown number of

naturally occurring defects). Moreover, the empirical studies until

now have focused on a few selected estimators for each CR model

type. A more detailed analysis of all the available estimators for

each CR model is needed.

This paper performs a comprehensive evaluation of CR models

and their estimators on real software artifacts that contain natural

defects made during their development. The artifacts were

inspected two times; and we evaluate the performance of the CR

models and estimators after each inspection cycle. We compare

the performance of the estimators and choose the best model. We

also analyze the ability of the CR models to accurately predict the

need for a re-inspection. Finally, the findings from this study are

compared with findings from previous research in software

engineering and biology.

Section 2 describes the CR models and their application to

inspections. Section 3 discusses the background literature that

inspired this study. Section 4 describes the design of the study.

Section 5 describes the data analysis and results. Section 6

discusses the threats to validity. Section 7 discusses the relevance

of the results and compares the results with previous results in

software engineering and biology. Section 8 concludes the study.

2. USE OF CAPTURE-RECAPTURE IN

SOFTWARE INSPECTIONS

CR models in biology and wildlife research make certain

assumptions, and only some of them are met in software

inspections. The assumptions made by CR models that hold for

software inspections are: a) Closed population: All inspectors

work independently, inspect the same artifact, and the artifact

remains unchanged during the experiment, and b) Defects are

recorded on defect lists and maintained to make distinction

between captured and recaptured defects. However, the

assumption regarding equal capture probability is not satisfied [2,

16, 22]. In software inspections, inspectors can have different

defect detection abilities (based on their difference in background

education, training, or innate ability) and defects can have

different detection probabilities (as some defects are easier to

locate than others) [2].

To accommodate these variations, four CR models, each with

different sources of variation, are shown in Table 1. These models

were originally developed by biologist [15, 22], and have been

used in previous empirical studies in software inspections [2, 8-9,

13, 16, 17-18, 21, 24]. These studies are discussed in detail in

Section 3.

Furthermore, each CR model in Table 1 has different estimators.

Each estimator uses a different statistical approach to produce the

population estimate. The estimators used in this study are shown

in Table 2 along with the associated CR model from Table 1.

Some of the estimators have been used in previous studies, while

others are used here for the first time in the software inspection

domain (those marked with *). The mathematical details of the

estimators are beyond the scope of this paper. More details about

each CR estimator can be found in the provided references.

All of the CR estimators use the data organized in the same way

for computing their estimates i.e., a simple matrix with rows

representing defects and columns representing inspectors. An

entry in the matrix is 1 if the defect was found by the inspector

and 0 otherwise. Each estimator can derive all the other required

statistics from this matrix to estimate the defect population [2, 15,

22].

3. EMPIRICAL STUDIES OF CAPTURE-

RECAPTURE MODELS IN SOFTWARE

INSPECTIONS

Eick et al., proposed the use of CR for software inspections and

performed the first study of CR models in software inspections.

They used the maximum likelihood estimator (MLE) for the Mt

model to estimate the defects remaining in real requirements and

design documents at AT&T. The defects were naturally occurring

and not seeded. The results showed that the estimates of

remaining defects were similar to the subjective opinions of the

developers. Based on the inspection results in their environment,

Eick et al., recommended that an artifact be re-inspected if the

number of remaining defects is greater than 20 percent of the total

[8, 9]. This recommendation is still used by CR studies. With the

introduction of new estimators, other empirical studies were

performed to evaluate and improve them.

Among those early efforts, Weil and Votta used artifacts with

seeded defects to compare the performances of the MLE estimator

for the Mt model and the Jackknife (JK) estimator for the Mh

model when their assumptions were violated. The authors tried to

improve the accuracy of these estimators by suggesting a

grouping method. The result showed that the MLE estimator was

more accurate than the JK estimator, with and without grouping

[21]. Wohlin et al., also suggested an improvement to MLE

estimator and evaluated it on a text document with seeded defects.

Contrary to earlier findings, the results showed that the MLE

estimator overestimated the number of defects. However, this

study was done with a non-software engineering artifact [23, 24].

Later on, Briand et al., evaluated a series of CR models using data

generated from the inspection of artifacts with seeded defects by

NASA software professionals. The result from this study showed

that the estimators generally underestimate the number of defects,

and recommended using the JK estimator. The result also showed

that a minimum of four inspectors are needed for achieving

satisfactory estimates [2]. This study was later replicated and

confirmed that the Mh model is the superior model and

recommended the JK estimator [13].

Emam et al. evaluated CR estimators for two inspectors using

artifacts with seeded defects and analyzed their ability to

accurately determine the need for re-inspection. The results

showed that Mh-JK and Mt-Ch are the best estimators, and that

not all estimators helped in making correct decisions on re-

inspections [11]. Emam, et al., also advocated the use of the

inspectors’ subjective opinions along with the CR estimates when

the models are used during real development (i.e., when the actual

defects are unknown rather than seeded) [10]. Another study

evaluated the CR methods using artifacts with seeded defects and

advocated the use of confidence interval coverage rather than

point estimates for achieving more trustable estimates.

Conversely, this study showed that the subjective estimates are

significantly less accurate than the CR estimates [18].

Previously, we reported on a study concerned with the effect that

increasing the number of inspectors has on the quality of the CR

estimates, using a software artifact with seeded defects. A major

result from this study was the identification of the minimum

number of inspectors required for achieving different levels of

estimation accuracy [20]. Other researchers (e.g., Runeson,

Thelin, and Wohlin, et al.,) have conducted similar CR studies to

evaluate the CR estimators with defects (real or artificial) seeded

into artifacts before inspection, and can be referred from a list of

all the CR studies conducted over ten years (1992-2002) of the

research in software inspections [16]. Analysis of these studies

acknowledged the fact that the major results regarding the

evaluation of CR models are derived from studies conducted on

the artifacts with seeded defects.

To summarize, the major results from the evaluation of CR

models in software inspections include: a) a consensus that Mh is

the best model and Mh-JK is the most accurate estimator, b)

estimators generally underestimate, but improve with more

defects and inspectors, c) a minimum of four inspectors are

required for achieving satisfactory estimates, and c) there is no

consensus on the relative accuracy of subjective and objective

estimates.

4. STUDY DESIGN

The earlier CR studies evaluated the four basic models and some

of their estimators. A major difficulty when evaluating CR models

is that the number of actual defects is not known beforehand.

Therefore, many researchers have used seeded defects to allow for

comparisons of the estimates to the actual value (i.e., number of

seeded defects). Accordingly, the major findings and

recommendations are based on inspections using artifacts with

seeded defects. No empirical study has comprehensively

evaluated the CR models in a case where the number of defects is

not known beforehand, as would be the case with any real

development.

Furthermore, software reliability research has shown that seeded,

artificial defects differ in detection probability from naturally

occurring defects and are easier to detect. Even when re-seeding

real defects, their densities differ from that of natural occurring

defects [14]. Therefore, the nature of the defects can influence the

estimation results. To provide better information for project

managers and inspectors to use when deciding on the adoption of

CR models in their organization, it is important to evaluate the CR

models in real settings.

This paper describes a comprehensive evaluation of CR models

and their estimators on real software artifacts that were developed

by students in a senior-level capstone software engineering class

(i.e. they were created to guide the later implementation of the

system) with naturally occurring defects, and later inspected in the

same environment. In addition, each artifact was inspected twice,

which allowed the analysis of the CR estimator’s ability to make

correct recommendations about the need for re-inspection. The

findings from this study are then compared with the earlier

findings to gain more insights.

4.1 Goal(s) of the Study:
The main goal of this study is to evaluate the CR models and

estimators on real software artifacts with naturally-occurring

defects, and number of actual defect count not known beforehand.

More formally, the goal is to:

Analyze the CR models and estimators

For the purpose of evaluation

With respect to the ability to estimate the number of

remaining defects

From the point of view of project managers and inspectors

In the context of a real requirements document

4.2 Data Set

The data for the CR analysis was drawn from earlier inspection

studies conducted at Mississippi State University (MSU). The

goal of those studies was to investigate the use of human errors

(i.e., mistakes in the thought process) committed during

development for improving the quality of the software artifact

[19]. Only the information relevant to the CR analysis is provided

here.

4.2.1 Software Artifacts and Software Inspectors

Table 3. Artifacts, and Inspectors used in this Study

Artifact

Name

Description
Number of

Inspectors

1st

Inspection

Defects

2nd

Inspection

Defects

Total

Defects

A Starkville

theatre system

Management of ticket sales and seat

assignments for the community theatre

8 30 25 55

B Management of

apartment and

town properties

Managing apartment and town property,

assignment of tenants, rent collection,

and locating property by potential renters

8 41 64 105

C Conference

management

Helping the conference chair to manage

paper submission, notification of results

to authors, and other related

responsibilities

6 52 42 94

D Conference

management

(Same as C) 6 64 54 118

Inspection data from four software artifacts is used in this study.

The artifacts were developed by senior-level undergraduate

students, majoring in either computer science or software

engineering enrolled in the Software Engineering Senior Design

Course at MSU during the Fall 2005 and Fall 2006 semesters. The

course required students to interact with real customers, elicit, and

document requirements that they would later implement. So, even

though the developers are students, the artifacts are realistic for a

small project. The subjects were divided into 4 teams (with 8, 8, 6,

and 6 students respectively) that developed the requirement

documents for their respective systems as shown in Table 3. (Note

that even though artifact D has the same description as artifact C,

it was a different set of requirements created by a different set of

subjects.) Each artifact was then inspected independently by the

same developers who created it [19].

4.2.2 Software Inspection Process
The goal of the original experiments was to investigate the

usefulness of error information in software inspections as opposed

to just using fault information. The inspection process consisted of

having each inspector inspect the artifact using a simple fault

checklist and log the faults. After that, training was provided on

how to abstract errors from faults, how to classify the errors, and

how to use the errors to re-inspect the requirements document for

more faults. The same process was used to inspect all four

artifacts. Note that the artifacts were not modified or corrected

between inspections (i.e. the same artifact was re-inspected).

Therefore, we have inspection data from first inspection, the

second inspection, and total for each artifact. Note that the last

three columns in Table 3 show total unique defects found during

the first inspection, unique defects found during the second

inspection (different from the defects found during the first

inspection), and total defects for both inspections (the sum of the

defects from the first and second inspection) respectively.

Because the same process was used for all four artifacts and the

subjects were all drawn from the same population, the CR

analysis combines the inspection data from all the four artifacts

into one large dataset for evaluating the CR models and their

estimators. Because each artifact had a different number of

defects, the analysis in this paper focuses on percentages of

defects found to normalize the data.

4.3 Experiment Procedure

To evaluate the CR models and estimators after each inspection,

we used two automated tools (CAPTURE [10] and CARE [3]) to

calculate the estimates for each of the fourteen estimators as

follows:

a) Calculate estimates after first inspection: For each artifact,

the defects found during the first inspection (column 5 of

Table 3) by all inspectors are inserted into a matrix (as

described in Section 2). This matrix is then fed to the

automated tools to produce the estimates for all the

estimators. Using the estimated defect count and the number

of unique defects found at first inspection, the number of

remaining defects can be estimated.

b) Calculate estimates after second inspection: Because the

artifacts were unchanged between inspections, to calculate

the estimates after second inspection, we use the total defects

found from both inspections (column 7 of Table 3). It did not

make sense to use only the data from inspection 2 because

some information would have been excluded making the

estimates inaccurate. Therefore, for each artifact, the defects

found at the first and second inspection by all inspectors are

inserted into a matrix. The matrix is then fed to the

automated tools to produce the estimates from all the

estimators. Using the estimated defect count and the number

of defects found after both inspections, the remaining defects

after second inspection is estimated.

4.4 Evaluation Criterion

The estimators are evaluated based on their performance after the

first and second inspection using these parameters: accuracy

(bias), precision (variability), and failure rate.

The accuracy (bias) is measured as the relative error (R.E) of an

estimate. It is calculated as:

Relative error = (Estimated number of defects – Actual number

of defects) / Actual number of defects

A R.E of zero means absolute accuracy. A positive R.E. means an

overestimation. A negative R.E means an underestimation. R. E

threshold of +/- 20% is considered satisfactory for estimates.

Figure 1. Relative error in estimates after first inspection

Figure 2. Relative error in estimates after second inspection

Because we do not know the actual number of defects, the total

number of exclusive defects found after both inspections is

assumed to be the actual defect count for the purposes of this

study. The difference between the estimated defect count and this

actual defect count is used to evaluate the accuracy of CR

estimators. Furthermore, the error in the estimates is calculated

relative to each artifact to allow for combination of the results

from all the artifacts.

The precision (variability) of an estimator is measured by

calculating the inter-quartile range (IQR), the outliers, and the

extreme outliers.

The failure rate is the number of times an estimator fails to

produce an estimate.

5. DATA ANALYSIS AND REPORTING

RESULTS

This section first compares the estimates produced after the first

inspection and the second inspection. Then, it analyzes the best

CR model. Finally, it discusses how to use the CR estimators to

manage the inspection process. An alpha value of 0.1 is selected

in this initial study, because there are only four data points (four

artifacts).

5.1 Comparison of the Estimates after One

and Two Inspections

The performance of the CR estimators is compared after the first

and second inspection based on the relative error values. Figure 1

and Figure 2 show the accuracy and precision of the each

estimator after the first inspection and after the second inspection

respectively. Figures 1 and 2 partition the relative error values

into different regions: the solid line represents absolute accuracy

(0 biases), the lower dashed line is a 20% underestimation, and

the upper dashed line is a 20% overestimation. Important

observation from Figures 1 and 2 are:

a) In terms of accuracy, there is a general trend that the CR

estimators underestimate the defect count after first

inspection as most estimators fall below the 0% line and

many fall below the -20% region. There is also a general

trend that the CR estimators overestimate the defect count

after the second inspection, but, most of the estimates (except

Mh-JK) fall within the acceptable range of 0%-20%. In

addition, the estimators for Mh and Mth models are generally

less biased than the estimators for the Mo and Mt models at

both inspection cycles (except for the Mh-JK estimate after

the second inspection).

b) In terms of precision, the estimators of Mo and the Mt models

are generally more precise (less variation) than estimators

from the Mh and the Mth models after the first inspection and

after the second inspection. Also, the estimators are more

accurate and precise after second inspection than after the

first inspection.

c) In terms of the failure rate of an estimator, Mth-EE failed to

produce an estimate for artifact C at the first inspection. No

other estimator showed any failure.

For each estimator, the relative error after the first inspection was

statistically compared with the relative error after the second

inspection to determine whether there was any significant

improvement. For this analysis we were focused on the magnitude

of the relative error and therefore overestimation and

underestimation were treated equally. The results from a 2-tailed

paired samples t-test show a significant improvement in the

estimation accuracy for all the estimators after second inspection

over the estimates after first inspection.

5.2 Selection of the Best Capture-Recapture

Model
This study includes four CR models with different estimators for

each model: three estimators each for Mo and Mth models and four

estimators each for Mh and Mt models. This section analyzes the

best model(s) to use in software inspections based on the

estimates after the first inspection and after the second inspection.

We select the best model(s) using the selection procedure (with

little modification because of no outliers in our data) originally

used by Briand et al., [2], explained as follows.

a) First, the best estimator for each model is selected. To choose

the best estimator, a 2-tailed paired samples t-test is used to

compare the relative error values for the four artifacts (to

analyze the direction of improvement and its significance).

For each model type, each estimator is compared against

every other estimator to select the best estimator for that

model. If the t-test does not show significant results in spite

of the difference in their mean relative bias values, then the

Wilcoxon test is performed (as this test is more powerful

under certain situations and can test variability in the

estimates). If there is still no statistically best estimator, the

estimator with least mean relative error is chosen as the best

estimator.

b) After selecting the best estimator from each model, the

models are compared using 1-tailed t-test to select the best

model (major source of variation). We use 1-tailed t-test to

test the hypothesis that more sources of variation

significantly decreases the bias in the estimate, i.e., Mth (with

two sources of variation) is better than Mt and Mh (with one

variation source), which in turn are better than Mo (with no

variation).

For both statistical tests, an alpha value of 0.1 is selected. This

procedure is conducted separately after the first inspection and the

second inspection as shown in Figure 3 and Figure 4 respectively.

In these figures, the nodes represent the best estimator selected

from each model and the lines represent the relationship between

models with the arrow pointing towards the better model. The p-

value represents the statistical significance of the improvement

(double bold lines indicate significant improvement).

5.2.1 Selection of the Best Capture-Recapture Model

after First Inspection
For the Mo model, the results from the 2-tailed t-test show that

CMLE is the best estimator. For the Mt, model, the results show

that Chao is the best estimator. For the Mh model, the results from

the t-test and Wilcoxon tests do not show any difference among

the EE, Ch, and JK estimators. We selected the JK estimator

because it had the smallest mean relative bias. Finally, Chao was

selected the best estimator for Mth type model based on the results

of the t-tests.

Figure 3, then, shows the results of the process for selecting the

best model after the first inspection. The results from the 1-tailed

t-test show that the Mt, Mh, and Mth models are an improvement

over the Mo model, but this improvement is only significant for

the Mh and Mth models. Therefore, the model Mt is not a

significant improvement over Mo model. Furthermore, the Mth

model is also a significant improvement over the Mt model, but

not a significant improvement over the Mh model. Although Mh

model is better than the Mt model, there is no significant

difference between the Mh and Mt type models. Based on the

number of arrows pointing towards a model, the Mth is chosen as

the best model for the first inspection.

5.2.2 Selection of the Best Capture-Recapture Model

after Two Inspections
For the Mo model, the results showed that EE and UMLE are the

best estimators, with no significant difference among them. We

selected M0-EE as the best estimator due to its smallest mean

relative error. For the Mt model, the results from the t-test show

that Chao is the best estimator. For the Mh model, the results show

that SC and Ch are the best estimators, with no significant

difference among them. We selected Mh-SC as the best estimator

due to its smallest mean relative bias. Again, the Mth model results

showed that SC and EE are the best estimators, with no significant

difference among them. We selected Mth-SC as the best estimator

because of its smallest mean relative bias.

Figure 4, then, shows the results of the selection process for the

best model after the second inspection. The results show that the

Mt, Mh, and Mth models show significant improvement over the

Mo model, which is expected (models with any source of

variations are expected to be better than model with no source of

variation [15]). However, both the Mt and Mh models show a non-

significant improvement over the Mth model, which was

unexpected. Based on the results in Figure 4, the model with two

sources of variation (Mth model) is no better than models with one

source of variation (Mh and Mt models). On the contrary, the Mt

and Mh models showed an improvement over Mth model, even

though the improvement is not significant. This result also

contradicts the earlier finding that the Mth model is better than

other models when there are a large number of defects and

inspectors [2]. Furthermore, there is no significant improvement

between the Mt and Mh models. Based on the number of arrows

pointing towards a model, the Mh model is chosen as the best

model after the second inspection.

Combining the results from Figures 3 and 4, we can make

following observations:

a) Model with two sources of variation do not always show an

improvement over models with one source of variation, but

always show significant improvement over a model with no

sources of variation.

b) The models Mh and Mth are a significant improvement over

M0 model, whereas the model Mt does not always

significantly improves over the Mo model.

Mo-EE

Mt-Ch Mh-SC

p=0.005

p=0.26 p=0.40

p=0.07

p=0.05

Mth-SC

p=0.24

Figure 4. Best model (s) after second inspection

Mo-CMLE

Mt-Ch Mh-JK

Mth-Ch

p=0.12

p=0.11 p=0.06

p=0.07

p=0.005

p=0.22

Figure 3. Best model (s) after first inspection

Figure 5. Estimated remaining defects after the first

 inspection

Figure 6. Estimated remaining defects after the second

inspection

c) Neither of the models with one source of variation (i.e. Mt

and Mh) is significantly better than the other.

d) There are no general trends in the selection of the best

estimator for each model type (except Chao estimator for the

Mt model).

5.3 Using the CR Models to Manage the

Software Inspections

A major thrust of this study is to investigate whether project

managers can trust CR estimates to manage inspection of software

artifacts in real-time. Accordingly, this section analyzes the ability

of the CR estimators to provide insight into the quality of the

software artifacts. To accurately manage the inspection process,

the decision about whether to re-inspect an artifact based on the

CR estimates after the first and the second inspection is also

evaluated. Since we do not know the actual number of defects in

the artifacts, the inspectors’ subjective estimates are also analyzed

to gain more insights into the results.

The estimates of defects remaining in an artifact help in deciding

when to stop the inspection process. We first compare the

estimated remaining defects after first inspection and then, after

the second inspection with the 20% threshold to make a decision

on the need for re-inspection (i.e., if the defects remaining are

greater than 20%, a re-inspection is needed).

As in actual development, CR models are used to estimate the

remaining defects after an inspection using data only from that

inspection. Accordingly, we estimate the remaining defects after

first inspection without using the defect information from second

inspection. The percentage of remaining defects after an

inspection is calculated for each estimator as:

Relative estimate of remaining defects = (Estimated total

defects - defects captured during an inspection) / Estimated

total defects

For example, for artifact A and Mo-CMLE estimator, the number

of defects remaining after first inspection are;

Remaining defects = 39(estimated defects) – 30 (found)

 39 (estimate total defects)

 = .23 (i.e., 23% of defects remain)

The estimates of the remaining defects are done relative to each

estimator, and the estimates from all the 14 estimators are used to

compute the median and range of the percentage of remaining

defects for each artifact. Figure 5 compares the percentage of

remaining defects for all artifacts after the first inspection (the

dotted line shows the 20% threshold). Figure 5 also shows the

actual percentage of additional defects found during the second

inspection for each artifact to give an indication of the accuracy of

the estimates after the first inspection.

After the first inspection, the median estimated remaining defects

for all the artifacts is greater than 20%, while some estimators

estimated 40% or more remaining defects for artifacts B, C, and

D. The estimates indicate the need for a re-inspection of all

artifacts. The actual data from the second inspection showing the

percentage of the additional defects found during re-inspection

(A- 45%, B- 43%, C- 45%, D- 46%) supports this decision.

During the original study, the CR models were not used, so the

only data which was available to decide on a re-inspection was the

subjective opinions of the inspectors. In this case, the subjective

opinion of developers supported the recommendation of the CR

estimators. The inspectors for each artifacts felt that there were

defects remaining after first inspection and so a re-inspection was

performed. Similarly, the number of remaining defects after the

second inspection is estimated relative to each estimator using the

defect data from both inspections.

For example, for artifact B and Mt-Ch estimator:

Remaining defects = 91(estimated defects) – 81(found)

 91 (estimate total defects)

 = .11 (i.e., 11% of defects remain)

The percentage of estimated remaining defects after the second

inspection for each artifact is shown in Figure 6. After the second

inspection, the median estimate of remaining defects as well as

extreme outliers for all the artifacts never exceeds the 20%

threshold. There is some variation in the estimates for artifacts C

and D, but none of the estimate exceeds 20%. The results indicate

that there is no need for further re-inspections for any of the

artifacts; and the inspection process should be stopped.

The inspectors’ subjective opinion regarding the remaining

defects after the second inspection (which was all that was

available during the original study) supported the

recommendation of the CR estimates. The inspectors agreed that

they had located all the defects present in the artifact during

second inspection, ruling out any need of further inspection. So,

the inspection process was stopped.

Combining the results from Figure 5 and 6, the CR estimates is

helpful to managers for deciding on the need of re-inspection

under realistic inspection conditions.

6. THREATS TO VALIDITY

In this study, there were some threats to validity that were

addressed. The artifacts used in this study are real software

artifacts that were later used to guide implementation. The defects

were naturally occurring and inserted while developing the

artifacts rather than artificially seeded. The subjects were

provided an equal amount of time to perform the first and second

inspection, thereby avoiding any bias.

However, there were some threats to validity that were not

addressed. First, the actual number of defects present in each

document is not known and might actually be higher than the

assumed defect count (i.e., the total number of defects found after

two inspections). This threat especially affects the evaluation of

the prediction after the first inspection. A second threat was the

artifacts used in this study were developed by student teams in a

senior-level capstone course, and it may not be a representative of

industrial strength requirement documents. Also, the nature of

faults committed by students during development can differ from

the faults made by software professionals.

7. DISCUSSION OF RESULTS

This section discusses the major findings and recommendations

about the CR models and estimators for achieving reliable

estimates. The major findings from this study are compared with

the earlier findings from software engineering and biology.

7.1 Summary of Major Findings

Quality of estimates: As expected, the number of defects

influences the quality of estimates. The estimates are highly

negatively biased after first inspection and become positively

biased after second inspection as more defects are found. The

improvement is statistically significant for all the estimators.

Considering the fact that there might be more defects remaining

after second inspection, that were not included in the analysis, the

estimates may actually be more negatively biased after first

inspection and less positively biased after second inspection. In

addition, the precision and the failure rates of the estimators also

improve after the second inspection. However, contrary to earlier

findings, Mh-JK is not the best estimator. In this study, Mh-JK

overestimated compared with other estimators after both

inspection cycles. This overestimation was unsatisfactory after the

second inspection. Although, because we do not know how many

defects actually remain after the second inspection, it is possible

that Mh-JK has not overestimated.

The best capture-recapture model: We tested the hypothesis that:

Mth model with two sources of variation (varying inspector

abilities and varying defect detection probabilities) is significantly

better than models Mt (varying inspector abilities) and Mh

(varying defect detection probability) with one source of

variation, which in turn are significantly better than Mo model

with no variation. Using the estimates from the first inspection

alone, the result did not followed this trend since the Mth model

did not show a significant improvement over Mh model, and the

Mt model did not show a significant improvement over Mo model.

The results are even more unexpected after the second inspection,

as there is no significantly better model between the models with

one source of variation (Mt and Mh) and the model with two

sources of variation (Mth). In summary, Mth is the best model after

the first inspection whereas Mh is the best model after the second

inspection. Therefore, defect detection probability is always a

source of variation, while the inclusion of varying inspector

ability does not always improve the estimation. However, there is

no general trend regarding the best model under all cases. Lastly,

no particular estimator for each model type outshines other

estimators all the time.

Determining quality of a software artifact: The results show that

the CR estimators can help managers accurately decide on the

need for re-inspection of an artifact. Some estimators can

underestimate the actual defect count and hence, the remaining

defects in an artifact. It is therefore recommended that all the

estimators are used. Then analyze the median and variability in

the estimates of remaining defects. If any data point exceeds the

20% mark, then re-inspection should be considered. The results

also show that the subjective estimates are similar to objective

estimates if the inspectors are same people who developed the

requirements because they can provide much better assessment. It

is not clear how the subjective estimates would differ if the

inspectors were not involved in the artifact development. This is a

future research issue that must be investigated.

7.2 Comparison with Previous Findings in

Software Engineering and Biology

Table 4 compares the major findings from this study with earlier

research findings from software engineering and biology and

wildlife research. The findings from this study support some of

the previous findings, while they contradict some others, and

provide some additional insights.

The findings from software engineering and biology that are

consistent with our findings are: 1) CR estimates improve as more

defect data is fed to them, 2) The Mth model does not improve

significantly over Mh model, and 3) The Mh-JK estimator

overestimates with less overlap of recaptured defects.

Some of the findings in this paper that contradicts the earlier

findings are: 1) There is no significant difference between Mh and

Mt models, 2) The Mt model is not always a significant

improvement over Mo model, 3) There is no best estimator for all

the CR model all the times, and 4) It is not always true that

models with more sources of variations are significantly better.

Some of the findings reported in this paper were new. The

jackknife (JK) estimator always overestimates in comparison to

all the other 13 estimators used in this study. Also, a relatively

new result showed the ability of the CR models to accurately

decide the need for re-inspection of software artifacts in real-time

development. The subjective opinion of the inspectors (also used

Table 4. Comparison of Findings

S. No Our Study Software Engineering Biology and Wildlife

1. CR estimators highly underestimate the defect

count after the first inspection, and the

estimates are significantly more accurate and

precise after the second inspection.

The CR estimators underestimate

the actual number of defects, and the

estimates improve with more

defects, and inspectors [16, 20, 21]

All models generally

underestimate but estimates

improve with more trapping

occasions and animals, Failure rate

is high only for few inspectors [15,

12, 22]

2. Mh-JK overestimates after each inspection

compared with the other estimators and the

overestimation increases with decreasing

defect overlap.

Studies show that Mh-JK

overestimates if the overlap of

defects among inspectors is small [2,

16, 20]

Mh- JK severely overestimates in

case of few trappings, but provide

good estimates if the overlap of

animals caught at different

trappings is large [6, 22]

3. Mth is the best model after the first inspection

whereas Mh is the best model after the second

inspection; the defect capture probability is

one definite source of variation

A large number of studies indicate

that the Mh is the best CR model,

and defect capture probability is a

major variation source [2, 13, 16]

Mh show significant improvement

over Mt models, while Mth models

do not show improvement over Mh

models [12, 22]

4. We contradict that Mh-JK is the best

estimators as it do not always produce the best

results

Studies show that Mh-JK is the best

estimator with four or more

inspectors [2, 13, 16]

Mh-JK produces good estimate

especially if many animals are

recaptured a lot of times [3, 15,

22].

5. There is no general trend in the best estimator

for each model. Different estimators for each

model type are best at first and second

inspections.

UMLE is the best estimator for Mo

model, Ch is best for Mt and Mth

model, Ch and JK are best for Mh

model [2], SC for Mh and Mth are

best estimators [20].

MLE estimators for Mo and Mt

type models produce highly

inaccurate estimates as compared

to Mh models [15]

6. Results from this study do confirm that the Mth

model is not always a significant improvement

over Mt and Mh models, and is always a

significant improvement over Mo model. We

reject that Mt is always a significant

improvement over Mo, and that the Mh model

is significantly better than the Mt model.

A general trend is that the more

sources of variations, the better the

model [13, 16], Model Mh is more

usable than Model Mt, while Mth

does not always significantly

improves over Mh [2].

A general trend is that the more

sources of variations, the better

the model, but Mth does not

always significantly improves

over Mh [15, 22]

7. CR estimators can provide accurate

information about whether or not to stop the

inspection process.

CR estimators are not always

accurate in deciding whether to re-

inspect [11].

Not Applicable

8. The inspectors’ subjective estimates match the

CR estimates when the inspectors are same

people as the developers.

Some studies show similarities

between the subjective and objective

estimates, while others show a

significant difference [10, 18].

No Result

in this study) matched with the CR estimates when the inspectors

are same as developers.

7.2 Relevance to Software Organizations

The CR models have been widely used in the academic context,

but hardly in industrial settings. Our earlier research efforts

analyzed the inspection defect data from Microsoft Corporation to

determine the minimum number of inspectors required to achieve

different levels of estimate accuracy [20]. This information

benefits project managers to plan and manage the inspection

process. Similarly, the results in this paper encourage

organizations to use the CR models in order to manage software

inspections to achieve their desired software quality standards.

The results in this paper add some more support to the view that

the CR models are usable by mangers to make correct re-

inspection decisions during software development practice.

Project mangers can use the results about the CR models and

estimators to make an informed decision on the need for re-

inspection. Indeed, a lot more research is needed to back these

results. The major future research issues are addressed in the next

section.

8. CONCLUSION AND FUTURE WORK

Based on the results provided in this paper, project managers and

software developers can use the CR models and estimators in

software organizations to manage software inspections and

achieve the desired artifact quality. We have evaluated the

estimators based on a +/-20% threshold. Project managers can

interpret these results using the specific quality criterion of their

organization. In addition, the cost-effectiveness of a re-inspection

should be considered in conjunction with the estimates of

remaining defects.

The results showed that the number of defects and the overlap of

defects among inspectors influence the performance of estimators.

Our future work in this area includes analyzing the effect of the

number of defects and the overlap of defects using this data set by

varying the number of defects and the number of inspectors. An

optimal number of defects and inspectors would provide more

information to project managers and software developers in

conducting effective software inspections. We also want to

analyze the influence of the inspection technique effectiveness

and other important variables on the performance of the CR

estimators.

9. ACKNOWLEDGEMENTS

We thank the 28 students who participated in the experiments and

provided us the raw data. We also thank Dr. Thomas Philip for

helping conduct the original studies and collecting the data. We

also thank the Empirical Software Engineering group at

Mississippi State University for providing useful feedback to this

research.

10. REFERENCES

[1] Ackerman, A., Buchwald, L., and Lewski, F., "Software

Inspections: An Effective Verification Process." IEEE

Software, 1989. 6(3): 31-36.

[2] Briand, L.C., Emam, K.E., Freimut, B.G., and Laitenberger,

O., "A Comprehensive Evaluation of Capture Recapture

Models for Estimating Software Defect Content." IEEE

Transactions on Software Engineering, 2000. 26(6): 518-539.

[3] Burnham, K.P. and Overtom, W.S., “Estimation of the Size

of a Closed Population When Capture Probabilities Vary

among Animals.” Biometrics, 1978. 65:625-633.

[4] Chao, A., “Estimation the population Size for Capture-

Recapture Data with Unequal Catchability.” Biometrics,

1987. 43(4): 783-791.

[5] Chao, A., “Estimating Animal Abundance with Capture

Frequency Data.” Journal of Wildlife Management, 1988.

52(2): 295-300

[6] Chao, A. and Yeng, H.C., Program CARE-2 (for Capture-

Recapture Part.2), http://chao.stat.nthu.edu.tw

[7] Darroch, J.N., “The Multiple-Recapture Conensus 1:

Estimation of a Closed Population.” Biometrika, 1958. 45:

343-359.

[8] Eick, S., Loader, C., Long, M., Votta, L., and Weil, S.V.

"Estimating Software Fault Content Before Coding". In

Proceedings of the 14th International Conference on

Software Engineering. 1992. Melbourne, Australia: ACM

Press: 59-65.

[9] Eick, S., Loader, C., Weil, S.V., and Votta, L. "How Many

Errors Remain in a Software Design after Inspection". In

Proceedings of the 25th Symposium on the Interface. 1993.

[10] El-Emam, K., Laitenberger, O., and Harbrich, T., "The

Application of Subjective Estimates of Effectiveness to

Controlling Software Inspections " Journal of Systems and

Software, 2000. 54(2): 119-136.

[11] El-Emam, K. and Laitenberger, O., "Evaluating Capture-

Recapture Models with Two Inspectors." IEEE Transactions

on Software Engineering, 2001. 27(9): 851-864

[12] Lee, S.M. and Chao, A., “Estimating Population Size via

Sample Coverage for Closed Capture-Recapture Models.”

Biometrics, 1994. 50: 88-97.

[13] Miller, J., "Estimating the Number of Remaining Defects

after Inspection." Software Testing, Verification and

Reliability, 1999. 9(3): 167-189.

[14] Musa, J., Iannion, A., Okumoto, O., "Software Reliability:

Measurement, Predicition, Application," McGraw-Hill, 1987

[15] Otis, D., Burnham, K., White, G., and Anderson, D.,

"Statistical Inference from Capture Data on Closed Animal

Population." Wildlife Monograph, 1978. 64: 1-135.

[16] Petersson, H., Thelin, T., Runeson, P., Wohlin, C. “Capture-

Recapture in Software Inspections after 10 Years Research-

Theory, Evaluation, and Application.” The Journal of

Systems and Software, 72(2):249-264.

[17] Runeson, P. and Wohlin, C., "An Experimental Evaluation of

an Experience-Based Capture-Recapture Method in Software

Code Inspections." Empirical Software Engineering: An

International Journal, 1998. 3(4): 381-406.

[18] Thelin, T., Petersson, P., and Runeson, P., "Confidence

Intervals for Capture-Recapture Estimations in Software

Inspections." Journal of Information and Software

Technology, 2002. 44(12): 683-702.

[19] Walia, G.S. and Carver, J. C., Philip, T., "Requirement Error

Abstraction and Classiifcation: An Empirical Study," In

Proceedings of 5th International Symposium on Empirical

Software Engineering, Rio de Janerio, 2006, pp. 336-345.

[20] Walia, G., Carver, J., and Nagappan, N. “The Effect of the

Number of Inspectors on the Defect Estimates Produced by

Capture-Recapture Models.” To appear in the Proceedings of

the 30th International Conference in Software Engineering.

May 10-18, 2008. Leipzig, Germany.

[21] Weil, S.V. and Votta, L., "Assessing Software Designs Using

Capture-Recapture Methoda." IEEE Transactions on

Software Engineering, 1993. 19(11): 1045-1054.

[22] White, G.C., Anderson, D.R., Burnham, K.p., and Otis, D.l.,

Capture-Recapture and Removal Methods for Sampling

Closed Populations, Los Alamos National Laboratory, 1982.

[23] Wohlin, C., Runeson, P., and Brantestam, J., "An

Experimental Evaluation of Capture-Recapture in Software

Inspections." Software Testing, Verification and Reliability,

1995. 5(4): 213-232.

[24] Wohlin, C. and Runeson, P. "Defect Content Estimation

from Review Data". In Proceedings of the 20th International

Conference on Software Engineering. 1998. Kyoto, Japan:

IEEE Computer Society Press: 400-409.

[25] Yip, P.S.F., “A Martingale Estimating Equation for a

Capture-Recapture Experiment in Discrete Time.”

Biometrics, 1991. 47: 1081-1088.

http://chao.stat.nthu.edu.tw/

