
Software Development Environments for Scientific and Engineering
Software: A Series of Case Studies

Jeffrey C. Carver1, Richard P. Kendall2, Susan E. Squires3, Douglass E. Post4

1Department of Computer Science and

Engineering
Mississippi State University

carver@cse.msstate.edu

2Software Engineering Institute –
Carnegie Melon University

rkendall@sei.cmu.edu

3Sun Microsystems
Susan.Squires@Sun.com

4Department of Defense High Performance
Computing Modernization Office

post@hpcmo.hpc.mil

Abstract

The need for high performance computing
applications for computational science and
engineering projects is growing rapidly, yet there have
been few detailed studies of the software engineering
process used for these applications. The DARPA High
Productivity Computing Systems Program has
sponsored a series of case studies of representative
computational science and engineering projects to
identify the steps involved in developing such
applications (i.e. the life cycle, the workflows,
technical challenges, and organizational challenges).
Secondary goals were to characterize tool usage and
identify enhancements that would increase the
programmers’ productivity. Finally, these studies were
designed to develop a set of lessons learned that can
be transferred to the general computational science
and engineering community to improve the software
engineering process used for their applications. Nine
lessons learned from five representative projects are
presented, along with their software engineering
implications, to provide insight into the software
development environments in this domain.

1. Introduction

Software written to solve scientific and engineering
problems that require the use of high performance
(massively parallel) supercomputers is an increasingly
important class of applications. Software engineering
processes and methods used to develop these
applications varies from those used to develop other

types of applications, such as in commercial IT. Some
of these differences are highlighted in Section 2.

The main goal of the work described in this paper is
to better understand the software engineering issues
that specifically influence the success or failure of
scientific and engineering software. This paper
describes a series of case studies of five such projects,
sponsored by various US government agencies.

The remainder of the paper is organized as follows.
Section 2 provides the motivation for studying
scientific and engineering projects. Section 3 gives an
overview of the case study methodology used to gather
the data. The five projects studied are described in
Section 4. Section 5 discusses the lessons learned
drawn from the whole set of studies along with their
implications for software engineering. Finally, the
conclusions are presented in Section 6.

2. Background and Motivation

Application software developed specifically for
scientific and engineering purposes (often using high
performance computers) has not been extensively
reported on in the software engineering literature. This
type of software can be developed for: simulations of
physical phenomena, processing of large amounts of
data, performance of complex calculations, and many
other important problems that could not be solved by
the development of traditional software. The presence
of some unique characteristics of this type of software
makes its study both interesting and valuable.

The first unique characteristic that differentiates
scientific and engineering software from its
commercial IT counterpart is the requirements

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

discovery and gathering process. While most scientific
and engineering projects are ultimately based on the
underlying laws of nature, which are fixed, the
application of those laws to a specific problem is often
unknown at the start of the project. Most requirements,
beyond some obvious high-level ones, are discovered
during the course of the project. Therefore, many of
these projects begin as research projects without a
definitive relationship among deliverables, schedule
and resources.

Another distinguishing characteristic is that the
main driver for these projects is, not surprisingly,
correct science or engineering, rather than ensuring
software quality through the use of sound software
engineering practices. In fact, many of the projects are
not given adequate funding or support to implement
even basic software engineering principles. Another
source of the often-encountered absence of software
engineering discipline is that the teams are largely
staffed by domain scientists and engineers rather than
by formally trained software engineers.

The third unique characteristic is that the
developers tend to be averse to the “process”-oriented
software development approaches which have been
successfully used to manage risk on other types of
software projects. This aversion is due in part to the
lack of formal software engineering training and in
part to the nature of the application domain. Many of
the projects have long life-cycles that last for decades
during which the model of science embodied in the
software evolves as knowledge evolves. Developers
tend to think they will have greater flexibility by not
following rigid software development processes.

The study of the application of software
engineering principles to scientific and engineering
computing has been increasing in importance and
prominence. One indication of this prominence is the
DARPA High Productivity Computing Systems
Project (HPCS)1. The overall goal of the HPCS project
is to develop the next generation of viable
supercomputers and ensure their programmability. As
part of the HPCS project, much effort has been
devoted to studying the software engineering process
for scientific and engineering projects. In addition, two
ICSE workshops have focused on the interaction of
software engineering and high performance computing
[3, 4]. Papers on software engineering for scientific
and engineering computing have also recently
appeared in both software engineering conferences
[13] high performance computing conferences [2] and
other venues [10].

1 http://www.highproductivity.org

3. Case Study Methodology

To gather information about software engineering
within the scientific and engineering computing
domain, we conducted a series of retrospective case
studies. The case study approach, as defined by Yin, is
a well-understood method for gathering initial
information [15]. This approach employs a set of
qualitative, open-ended methods to explore a topic and
develop hypotheses. The methods include data
collection techniques like Document Reviews,
Collection of Contextual Artifacts, Self-Reporting, and
Interviews. Data collected during a case study using
this broad set of methods can provide foundational
knowledge that is useful for generating hypotheses.
Similar case study approaches have been previously
been employed in software engineering [1, 8, 9, 12].

Each case study reported in this paper explored the
work of one project team along with the context in
which that work was performed. The overall goal for
each case study was to identify, as accurately as
possible, the activities and practices that contributed to
the success of a project and the activities that were
counterproductive. The use of a standard set of
methods across the series of case studies allowed for
the collection of consistent and comparable data. By
conducting multiple case studies on projects from
different application domains (explained further in
Section 4), general lessons learned were. The data
collection methods were selected based upon time,
security, and the nature of the topics to be explored.

To ensure that the case studies were as successful
and accurate as possible, the case study team consists
of experts with different, relevant backgrounds:
Computational Science and Engineering, Cultural
Anthropology, and Software Engineering. In addition
to their technical expertise, the case study team
members also have extensive experience in the
collection and analysis of survey and interview data.

The case study methodology included these steps:
1. Identify a feasible project and its sponsor.

Gaining the support of the project sponsor (i.e.
funding agency) is key for a successful case study.
The sponsor’s support makes the project team
more comfortable participating in the case study.

2. Negotiate case study participation with the
project team and sponsor. This negotiation
involves both logistics (i.e., when and where to
conduct the case study) and confidentiality (i.e.,
teams and individual team members must be
confident that they cannot be identified by either
their management or by outside readers. Also,
teams must be assured that they will be given the

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

opportunity to review any reports to remove
objectionable material prior to publication).

3. Survey the project team with a pre-interview
questionnaire. The pre-interview questionnaire
serves two purposes: 1) it reduces the amount of
time the case study team has to spend conducting
an on-site interview, and 2) it allows the project
team members to look up information that may not
be available during a face-to-face interview.

4. Analyze the questionnaire and plan on-site
interviews. The responses to the questionnaire
determine which topics need clarification during
the on-site interview. Based on this information,
an interview guide is created with the topics to be
addressed during the interview.

5. Conduct on-site interview. The interview
consists of three steps. First, the project team gives
an overview presentation. This presentation often
addresses many of the items on the interview
guide and allows the project team to communicate
what they believe to be most important about the
project. Second, questions are posed to the entire
project team. Third, if the project team is large
enough, it is divided into smaller groups for
focused questions. During each of these interview
sessions, there is a lead questioner, who is
responsible for ensuring that all questions are
covered. The other members of the case study
team act as scribes and also ask follow-up
questions based on their expertise. When possible,
the interviews are taped and transcribed for further
analysis.

6. Analyze the on-site interview and integrate
with the questionnaire. An initial list of findings
is prepared by consolidating the information
gathered through these two sources.

7. Conduct follow-up with the project team to
resolve unanswered questions. The initial
findings along with any remaining unanswered
questions are iterated with the project team until
everyone is satisfied.

8. Draft the case study report and iterate with
project team and sponsor. Based on the
information collected and the follow-up, a
preliminary report is drafted. This report is
circulated to both the project team and the sponsor
to ensure that all parties involved agree with the
accuracy and the anonymity of the report.

9. Publish the case study report.

The pre-interview questionnaire and on-site

interviews specifically focused on the following topics:
1. Goals, requirements and deliverables

2. Project Characteristics, Structure, Organization
and Identified Risks

3. Code Characteristics and Structure
4. Staffing
5. Workflow and Workflow Management
6. Verification, Validation and Testing
7. Measurement of Success
8. Lessons Learned

4. Description of Projects

Due to the classified nature of some of the projects,
and the desire for anonymity by all of the projects,
each has been given a pseudonym to remove any
identifying characteristics. This approach is common
when conducting case studies [15]. The following
subsections provide the basic characteristics of the five
projects studied, with more details on four of them
published elsewhere (FALCON [11], HAWK [5],
CONDOR [6], EAGLE [7], and NENE). Each project
is characterized by its purpose, its development and
execution environment (including languages used), and
its users; this information is summarized in Table 1.

4.1 FALCON Project

The goal of the FALCON project, which is just
beginning its useful life in its eleventh year, is to
develop a predictive capability for a product whose
performance involves the trade-off among many
strongly coupled physical effects spanning at least ten
orders of magnitude in each of the temporal and spatial
scales. An accurate predictive capability is needed to
reduce the dependence of the sponsor on large,
expensive and potentially dangerous empirical tests to
certify the product.

The parallel programming model used in this
project is Message Passing Interface (MPI). The target
platforms are a shared-memory LINUX cluster with
~1000 nodes and a large vendor-specific shared-
memory cluster with ~ 2000 nodes. The bulk of the
code is written in an object-oriented instantiation of
FORTRAN. The team has successfully captured some
of the advantages of object-orientation, such as
polymorphism and inheritance, while avoiding the
pitfalls (especially for parallel machines) of many
levels of inheritance and excessive use of templating.
The major blocks of code are about 410,000 SLOC of
FORTRAN, 50,000 SLOC of C, 200,000 SLOC of
library code, and about 30,000 SLOC of Perl, Python
and Unix scripts. Perl and Python are primarily used
for build and test scripts.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

FALCON is used by an external team of highly
knowledgeable and experienced product engineers to
assess the potential behavior of new and existing
product designs. Validation by the users is done by
comparing the output of the software to data from past
experiments and a few new experiments. The
engineers’ level of experience and expertise is
sufficiently high that they can not only identify defects
and model deficiencies, but can often identify the
source of the defects and needed model improvements.
In a very real sense, the users participate constructively
and effectively in the development, verification and
validation of the code.

FALCON is extensively documented on an internal
web-site (approximately 400 Mbytes of HTML files).
The documentation consists of descriptions of the
physics; the algorithms and models; the input and
output; and instructions for executing the code. This
documentation has proved to be highly useful.

4.2 HAWK Project

The purpose of the HAWK project was to develop a
computational predictive capability to analyze the
manufacturing process of a family of composite
material products. It was designed to allow the sponsor
to minimize the use of time-consuming, expensive
prototypes for ensuring efficient product fabrication.
The manufacturing process is governed by three
physical processes: 1) chemical reactions, 2) heat
transfer, and 3) fluid flow through a porous medium.

HAWK employs an unstructured, fixed finite
element mesh to represent and resolve the objects to be
manufactured. These objects can exhibit very complex
geometries which may require a significant effort to
represent in HAWK (months of staff-time). The
current version of HAWK evolved from an earlier
version and uses a message passing architecture based
on MPI (targeted to machines like the SGI Origin
3900). Portability is important for HAWK. Up to this
point, it has been successfully ported to hardware
developed by SGI (Origin® 3900), Linux Networx
(Evolocity® Cluster), IBM (P-Series® 690 SP) and
Intel-based Windows platforms.

Like FALCON, HAWK was developed using
multiple languages. There are approximately 134,000
lines of executable code in the program library of
which 67% are written in C++, 18% in C, and the
remaining 15% primarily in FORTRAN90 and Python.
The finite element “objects” and object manipulation is
coded in C++ (a strong contrast to the FALCON
project, which is based primarily on an object-oriented
instantiation of FORTRAN77); the FORTRAN90 code
comes primarily from third-party suppliers.

HAWK has been deployed to both internal and
external product engineers. There are only a small
number of users (on the order of tens of users), so the
development team is able to provide the needed
support. Work on this project is currently suspended.

4.3 CONDOR Project

The purpose of the CONDOR project was to
develop a simulation capability to analyze the behavior
of a family of materials when placed under extreme
stress. The CONDOR project began in the late ‘80s; its
earliest antecedent traces back to the late ‘60s. The
objects of the simulations are multi-material physical
entities with complex geometries. CONDOR
simulations allow the sponsor to minimize the use of
time-consuming, expensive tests to forecast
performance, and provide an alternative to infeasible
physical testing. The predictive capability addressed by
CONDOR is accomplished by integrating a set of
initial value equations for the conservation of: 1) mass,
2) momentum, and 3) energy.

CONDOR is supported on platforms ranging from
PCs to parallel supercomputers. A typical PC
application is 106 cells running for a few hours to a
few days. The largest application is on the order of
5x109 cells executing on 4000 processors. A typical
parallel application is on the order of 108 cells
executing on 100 to a few 100s of processors.
CONDOR tends to be one of the first applications
ported to new hardware platforms at its parent
institution. Like FALCON, CONDOR uses MPI for
parallelization and was developed primarily in
FORTRAN77 (approximately 85% of the ~200,000
SLOC), with the remainder written in FORTRAN90,
C, or Slang.

CONDOR has been deployed to both internal and
external users. There are several thousand occasional
users and hundreds of routine users. For PCs, it is
distributed on a per seat basis using a home grown
licensing manager similar to Flexlm®.

4.4 EAGLE Project

The EAGLE project had two important goals (1) to
determine if parallel, real-time processing of sensor
data guided by non-traditional algorithms was feasible
for a particular application, and (2) to demonstrate the
feasibility on specialized HPC hardware actually
deployed in the field (this project is an example of an
embedded HPC application). Thus, the EAGLE project
was a demonstration project with a large research
component and was not expected to result in a

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

production-ready software application. Consequently,
there are currently no users.

EAGLE is the second half of a two-part project.
Prior to its start, serial Matlab® prototypes were written
by algorithm specialists (typically Ph.D. physicists).
One of these prototypes was chosen to be a
“specification” and “reference code” for the EAGLE
implementation. Thus, the principal task of EAGLE
was to create a parallelized C++ implementation of the
algorithm and demonstrate real-time (or near real-time)
performance. The use of a Matlab prototype is an
important difference between this project and the
FALCON, HAWK, and CONDOR projects.

The algorithmic foundations of EAGLE are based
on Fast Fourier Transforms, median filtering, sorting,
hypothesis testing, and direct solution methods for
systems of simultaneous equations. Parallelization in
MPI was straightforward due to the nature of the
algorithms. A unique characteristic of EAGLE was its
real-time aspect. The more common type of HPC
problem involves computations on a very large data set
producing a single result, whereas EAGLE receives a
continuous stream of input data and produces a
continuous stream of output data.

Like HAWK, EAGLE made extensive use of C++.
Unlike HAWK, the EAGLE team developed the bulk
of the code using an institutionally-supported C++
library (~70% or 25,000 SLOC). The use of the library
and a Matlab prototype are distinctive features of this
project, and are considered best practice by the host
institution. JAVA is also used for pre-processing.

The target hardware for the real-time demonstration
of EAGLE was a specialized computer that can be
deployed on a military platform, while most of the
development was performed on SUN Sparcs
(Solaris®) and PC (Linux) with friendlier development
environments. This platform change represents a
novel, but critical, role for portability.

4.5 NENE Project

The NENE project is a suite of software
applications that can be combined to allow researchers
to calculate the properties of molecules using a variety
of computational quantum mechanical models. This
project began in the late 1980’s and is still very active.
The inherently global nature of the particle (atom, ion,
electron, molecule) interactions described by quantum
mechanics makes the likelihood of widespread
parallelism remote. The NENE project began as a
research code and has maintained a strong research
flavor throughout its existence. For the most part, the
funding has emphasized the domain science rather than
software engineering or computer science attributes.

One important characteristic of this project is the
large number of developers. Much of the development
is done in a university environment; as a result, as
students graduate, there is turn-over in the
development team. In addition, a sizeable portion of
the code is developed by external collaborators. The
NENE project has a designated code librarian who
ensures that any code included in a release is
thoroughly tested prior to inclusion. Partially as a
result of this situation, NENE has dealt with some
daunting project risks with a rather unorthodox
approach. For example, rather than deploying a
sophisticated configuration management tool to
manage the large program library, NENE has adopted
the approach of hand integrating every line of code by
the co-PI. This approach works because (1) the code is
very modular with a slender program backbone, and
(2) the distributed development community is very
familiar with the code and thoroughly tests
enhancements before submission (thereby making the
job of integration simpler).

NENE now has about 20,000 installations and an
estimated 100,000 users worldwide. There are over
5400 citations to the basic paper describing the project.
Due to its widespread usage, there is a strong need for
portability. There is essentially one version of the code
(750,000 LOC), written in FORTRAN77 subset of
FORTRAN90, that executes on all commonly used
platforms (except on Windows-based PCs). A separate
version of the code optimized for Windows PCs exists,
but it is not supported by the core NENE team.

5. Lessons Learned

The analysis of the five projects described in
Section 4 revealed some common patterns that resulted
in nine lessons learned. For each lesson, this section
presents support from the case studies and the
implications of that lesson for software engineering.

5.1 Verification and Validation is very difficult
in this environment.

Verification is the demonstration that the
application correctly solves the equations embodied in
the solution algorithm. Validation is the demonstration
that the application accurately models all the important
effects. Validation ensures that the software correctly
captures the laws of nature by comparing its
predictions to experimental data.

Validation is problematic because it is often
difficult, or even impossible, to establish the correct
output or result a priori. The goal of many of these

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

projects is to simulate some physical phenomena. In
many cases, the simulation falls into one of two
categories. One type of simulation explores new
science, which by definition does not have a known
result. The second type of simulation cannot be
experimentally replicated due to safety, expense, or
legal constraints. In this case, there is no experimental
result available against which to judge the accuracy of
the simulation result.

In cases where a correct answer is known and
available for verification, incorrect outputs or results
can be determined, at which time the problem shifts to
identification of the source of the problem, which can
be an equally daunting challenge. The development
process allows for at least three potential sources of
defects. The first step in the development process is for
a domain expert to create a model of nature (usually
done mathematically). Defects could enter at this step
if the domain expert builds an incorrect model, i.e. gets
the science wrong. The second step is to translate that
model into an algorithm, or set of algorithms, that can
be later implemented in software. Even if the original
model is correct, defects can enter at this step if the
model is incorrectly encoded into an algorithm.
Finally, the algorithms are implemented in software.
Again, defects can enter during this step through
inaccurate translation of the algorithm into code.

These issues combine to make the task of
verification and validation for scientific and
engineering applications very difficult. A member of
the EAGLE team provided another reason why
verification and validation is difficult:

V&V is very hard because it is hard to come up
with good test cases.

Table 1 – Code Characteristics

 FALCON HAWK CONDOR EAGLE NENE
Application

Domain
Product

Performance Manufacturing Product
Performance

Signal
Processing Process Modeling

Duration ~ 10 years ~ 6 years ~ 20 years ~ 3 years ~ 25 years
of Releases 9 (production) 1 7 1 ?

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3 FTEs ~10 FTEs (100’s
of contributors)

Customers < 50 10s 100s None ~ 100,000
Code Size ~ 405,000 LOC ~ 134,000 LOC ~200,000 LOC < 100,000 LOC 750,000 LOC
Primary

Languages
F77 (24%),

C (12%)
C++ (67%),

C (18%) F77 (85%) C++,
Matlab F77 (95%)

Other
Languages

F90, Python,
Perl, ksh/csh/sh Python, F90 F90, C, Slang Java Libraries C

Target
Hardware

Parallel
Supercomputer

Parallel
Supercomputer

PCs to Parallel
Supercomputer

Embedded
Hardware

PCs to Parallel
Supercomputer

Status Production Production
Ready Production Demonstration

Code Production

The inability to fully validate their results led the
CONDOR team leader to take an approach summed up
in the following comment:

I have tried to position CONDOR to the place
where it is kind of like your trusty calculator – it is
an easy tool to use. Unlike your calculator, it is
only 90% accurate … you have to understand that
the answer you are going to get is going to have a
certain level of uncertainty in it. The neat thing
about it is that it is easy to get an answer in the
general sense <to a very difficult problem>.”

The implication of this lesson is that the traditional

methods of testing software and comparing the output
to an expected result are not sufficient. Scientific and
engineering developers need to identify additional
methods to ensure software quality and to describe the
limits of the applicability of the software.

5.2 The primary language of a project typically
does not change over time.

Two interesting questions arise about this
community: (1) Why is FORTRAN still the dominant
language? And, (2) Why have more modern, higher-
level languages not been adopted? The developers of
these projects have all chosen what they believed to be
the best programming languages available to them.
Because of the long duration of the project lifecycle,

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

this choice is often strongly influenced by issues like
portability and maintainability. The case studies
revealed that once that language is chosen, it typically
does not change.

For example, developers of the NENE project chose
FORTRAN because of its ease of learning for the
scientists, compared with C++, (students and
researchers can become productive in a few weeks)
and its portability (a main goal of the project).
FORTRAN also produces code that performs well and
is supported on large-scale supercomputers. The
NENE project has stayed with this choice even though
FORTRAN is, for the most part, no longer taught in
the universities. There would have to be a very
compelling reason for NENE to change languages.
Any new language would have to provide some added
benefits without removing the advantages of
FORTRAN.

This trend was observed in all of three of the long-
lived projects. FALCON, CONDOR and NENE all
stuck with their original choice of FORTRAN77, for
the most part, despite the advances (and advantages for
parallel processing environments) of FORTRAN90
and Co-Array FORTRAN.

The constancy of the programming language is also
motivated by the users of the code. Many of the long-
lived projects also have many users (sometimes
numbering into the thousands) that interact with the
software at the code level. Changing from the primary
language would require retraining of these users. For
most projects, the infeasibility of retraining users is
another barrier to changing languages.

5.3 The use of higher-level languages is low.

The teams studied have avoided using higher-level
languages (e.g. Matlab) for the main application code.
This avoidance is due in part to the current limitations
of Matlab. While Matlab is a good language for
prototyping algorithms, code written in Matlab is
usually an order of magnitude slower than code written
in C, C++, or FORTRAN. Thus, Matlab is generally
used to develop and test solution algorithms. Once a
successful algorithm is developed, it is then recoded in
another language to achieve improved performance.

Specifically, CONDOR used 85% FORTRAN77
with the remainder in FORTRAN90, C, or Slang.
HAWK contains 67% C++ and 18% C, with the
majority of the other 15% being FORTRAN and
Python. FALCON is mostly in FORTRAN, but it also
contains code written in at least 5 lower level
languages (e.g. Python and Perl). Unlike the first two
projects, the FALCON project did introduce object-
oriented features in a backplane with FORTRAN

77/90 modules, but performance constraints greatly
restricted their use. EAGLE was the only project that
used Matlab. But, even in this case, it was limited to
implementation of prototypes and development of the
specification for the executable code, most of which
was ultimately written in C++.

While C++ is surely a higher level language than
FORTRAN, an interesting fact is that HAWK and
EAGLE restricted their use of C++ to a set of features
that fell mostly within the C subset of C++ (i.e. the
higher-level features of C++ were avoided).

A specific example of the motivation for avoiding
higher level languages can be seen in a comment made
by one of the CONDOR developers (addressing the
efficiency of the code created by a compiler):

I’d rather be closer to machine language than more
abstract. I know even when I give very simple
instructions to the compiler, it doesn’t necessarily
give me machine code that corresponds to that set
of instructions. If this happens with a simple do-
loop in FORTRAN, what happens with a monster
object-oriented thing?

The implication of this lesson along with the

previous lesson is that scientific and engineering
developers place more constraints on the choice of
programming language than developers in the
commercial IT domain. To be adopted by scientific
and engineering programmers, a language has to be
easy to learn, offer reasonably high performance,
exhibit stability, and give developers confidence in the
validity of the resulting machine instructions.

5.4 Developers prefer the flexibility of the
UNIX command line over an IDE.

The case studies revealed an absence of IDE
(Integrated Development Environments) usage by the
developers. The experienced developers tended to
dislike the rigidity they felt most IDEs imposed on
their development activities. These developers
typically knew what they wanted to do and were much
more comfortable, and they believed, more efficient
when typing commands on the command line rather
than navigating a series of nested menus. The reasons
that IDEs tend to be avoided is summed up by a
member of the EAGLE team. The developer believed
that IDE’s were not helpful because:

They all [the IDEs] try to impose a particular style
of development on me and I am forced into a
particular mode.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Another common belief was that developers had
more control when they were “closer to the metal” (i.e.
interacting more directly with the hardware). The
implications of this lesson are that developers do not
adopt IDEs because 1) they do not trust an IDE to
automatically perform a task in the same way they
would do it themselves; and 2) they expect greater
flexibility than is provided in current IDEs; 3) they
may prefer to use what they know rather than change.

5.5 Externally developed software is a risk.

Because of the very long development and
deployment phases, these projects tend to avoid using
externally developed software that may disappear or
become unsupported during the lifetime of the project.
Rather than relying on such software, the teams prefer
to develop this software in-house or to use open-source
software. Open-source software provides the benefit of
decreased development time through the use of
externally developed software while at the same time
providing the development team with the security that
the software will not disappear (because the team has
access to the source code and could maintain it if other
support became unavailable).

One exception to this rule is the NENE project,
which made use of a large amount of externally
developed software. In order to address the inherent
risk in this approach, a librarian was designated to
thoroughly test any code before integrating it into the
main codebase. The developers set the project up so
that the presence or absence of any externally
contributed software does not endanger commitments
to the sponsor. Therefore, NENE is not vulnerable to
external developers failing to deliver. It is vulnerable
to the core developers failing to deliver.

Ironically, the main problem faced by many
computational science and engineering projects is the
lack of good tools for parallel development (especially
for debugging). When quality commercial tools are
developed and become successful, the host company is
often bought by another company and the tool is
discontinued. If a project has planned its development
activities around the presence of such a tool, they must
then scramble to find, or more likely, develop an
adequate replacement.

The implication of this lesson is that the tool
situation in HPC development is tenuous because of
the tension between code developers and tool
developers. On one side, the code developers do not
trust the longevity of or support for third-party tools.
On the other side, the tool vendors cannot spend the
effort required to build and support proper tools due to
the lack of a stable market. Therefore, this Catch-22

situation has resulted in low usage of external software
and tools. The problem of third-party software has also
been identified by other researchers [14].

5.6 Performance competes with other
important goals

While performance (i.e. speed) is an important
requirement for these projects (as evidenced by the fact
that they all have targeted parallel supercomputers),
other non-functional requirements are considered just
as important in the long run. Performance is important
only to the extent that the software can be used by its
customers to meet their deliverables and milestones.
The longevity of these projects, along with the relative
frequency of new computing platforms, necessitate that
portability and maintainability be considered along
with performance as important, and often competing,
goals. The ability to easily port a project to new
machines increases the likelihood of its long-term
success. Conversely, if a team spends a large amount
of effort tuning the performance for one specific
platform, that effort is wasted when a new platform
becomes available prior to the release of the software.
Members of the CONDOR team highlighted this issue
in the following comment:

People want the environment [provided by
CONDOR] on their laptops, their workstations and
then log onto an HPC center on the other coast, put
it there, run it, and then take the results back down
to their workstations.

Overall the most highly ranked project goals were:
1. Correctness
2. Performance
3. Portability
4. Maintainability

Of these goals, portability was the only one that was
ranked as having “high” importance by all of the teams
studied.

The implication of this lesson is that the software
engineering methods needed in scientific and
engineering software may be different from those
needed for more traditional IT software. Methods must
be chosen and tailored so they are properly aligned
with the software development goals.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

5.7 Agile methodologies are better accepted by
scientific and engineering code developers than
more traditional methodologies.

Scientific and engineering projects appear to lend
themselves to the use of agile software development
approaches. In this case, “agile” refers to the
philosophical approach of agile methods rather than to
any particular method, such as eXtreme Programming.
Because many of these projects are doing new science
and the requirements are not (and cannot be) known in
detail in advance, operating in a rigid plan-driven style
(as some sponsors require) is not feasible or
productive. These teams need the flexibility to
experiment with different methods quickly to find ones
that work. While some form of planning is essential to
success, rigid software management is avoided.

Most of the teams studied have been successfully
operating with an agile philosophy (although they did
not always realize it) for decades -- long before the
term “agile” entered the software engineering
vocabulary. These teams have tended to favor
individual team members and good practices over
more rigid processes and tools.

The implication of this lesson is that existing
software engineering development methodologies and
philosophies need to be tailored for scientific and
engineering software development. Rigid, process-
heavy approaches tend not be used, both for technical
reasons (i.e. unstable or unknown a priori
requirements) and cultural reasons (i.e. the developers,
who tend to be scientists rather than engineers, tend to
view “process” unfavorably).

5.8 Multi-disciplinary teams are important to
the success of these projects.

The staffing profiles of these projects show the
multi-disciplinary nature of the problems being solved.
In total, computer scientists make up less than 20% of
the team members (although on different teams that
percentage varies from 0% - 33%), with the rest being
domain scientist or engineers. The main reason for this
staffing profile is presence of two types of complexity:
domain complexity and software complexity.

Domain complexity is evident in the fact that much
of this software is written to simulate highly complex
physical or engineering behavior. In fact, many of the
applications require a PhD in physics or a branch of
engineering just to understand the problem. The teams
have found it easier, and more practical, for the
domain scientists and engineers to learn how to write
software than for software engineers to learn all of the

relevant science or engineering concepts. Conversely,
to achieve performance and flexibility in such complex
applications, the teams also are in need of software
engineering expertise. A member of the HAWK team
put it this way:

In these types of high performance, scalable
computing [applications], in addition to the physics
and mathematics, computer science plays a very
major role. Especially when looking at
optimization, memory management and making [the
code] perform better…You need a multi-
disciplinary team. It [C++] is not a trivial
language to deal with…You need an equal mixture
of subject theory, the actual physics, and
technology expertise.

5.9 Success or failure of the project depends on
keeping customers satisfied (in addition to
sponsors).

This lesson is not unique to computational science
and engineering, but it is important to understand it
within the context of the scientific and engineering
software community. These projects appear to have a
different business model than for more traditional
commercial IT software. Funding often comes from a
governmental agency while the customers may or may
not be part of that same agency. Therefore, the success
of the project depends on satisfying both
constituencies. In the long run, keeping the customers
happy by responding to their needs is an important
factor in the success of any project. But, even if the
development team meets all the requirements and
milestones set by the sponsor, it may not succeed
without a supportive user community. For example,
because of the lack of users, HAWK has been
suspended despite its success technically. Balancing
the needs of all stakeholders can be a challenge.

6. Summary

This paper discussed five case studies of scientific
and engineering software development projects
sponsored by the US Department of Defense,
Department of Energy, and National Science
Foundation. Each project came from a different
scientific or engineering domain with different overall
goals. Based on the cross-analysis of these projects, we
presented a series of lessons learned in Section 5.

Overall, the work described in this paper led to the
following conclusions. First, we provided some insight
into the difficulty of verification and validation.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Second, we highlighted why agile development
philosophies closely fit these teams. Third, we came to
an understanding of why these projects do not adopt
higher-level languages, like Matlab, when doing so
would appear to provide advantages. Fourth, we
highlighted that while performance is important in this
domain (hence the use of parallel supercomputers) it is
often not the most important goal. Fifth, we explained
that there is an expertise gap because of the complexity
of the code and difficulty of the underlying domain.
Sixth, we showed why these software development
teams avoid IDEs. Seventh, we explained why teams
favor tools developed in-house (or open-source) rather
than commercial third-party tools. Each lesson was
supported with specific observations.

The goal of this paper is to provide information that
can be useful for the software engineering community
as well as the computational science and engineering
community. For the software engineering community,
this paper highlighted some of the reasons why the
development process for this type of software is
different from the development process for commercial
IT software and why some of the traditional software
engineering approaches have not been adopted. Some
of these differences are inherent to the domain, while
others could be addressed through education (e.g.
learning a new IDE). In addition, we have highlighted
some instances where existing software engineering
research is inadequate for this domain. For the
computational science and engineering community,
this paper provided some insights that could guide the
improvement of the software engineering process.

7. Acknowledgements

We would like to thank the members of the project
teams. We would also like to thank case study team
members Andy Mark, Christine Halverson, Dolores
Shaffer. This research was supported in part by the
United States Department of Energy (DOE) contract
DE-FG02-04ER25597 to USC-ISI and DOE contract
DE-FG02-04ER25633 and Air Force grant FA8750-
05-1-0100 to the University of Maryland.

8. References

[1] Card, D.N., Church, V.E., Agresti, W.W., "An Empirical
Study of Software Design Practices." IEEE Transactions
on Software Engineering, 1986. 12(2): 264-271.

[2] Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili, V.,
Hollingsworth, J.K., and Zelkowitz, M. "HPC
Programmer Productivity: A Case Study of Novice HPC
Programmers". In Proceedings of SuperComputing.
2005. p. 35

[3] Johnson, P. "Workshop on software engineering for high
performance computing system (HPCS) applications". In
Proceedings of Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on. 2004. p.
772-772

[4] Johnson, P.M. "Second international workshop on
software engineering for high performance computing
system applications". In Proceedings of Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on. 2005. p. 683-683

[5] Kendall, R.P., Carver, J., Mark, A., Post, D., Squires, S.,
and Shaffer, D. Case Study of the Hawk Code Project.
Technical Report, LA-UR-05-9011. Los Alamos
National Laboratories: 2005.

[6] Kendall, R.P., Mark, A., Post, D., Squires, S., and
Halverson, C. Case Study of the Condor Code Project.
Technical Report, LA-UR-05-9291. Los Alamos
National Laboratories: 2005.

[7] Kendall, R.P., Post, D., Squires, S., and Carver, J. Case
Study of the Eagle Code Project. Technical Report, LA-
UR-06-1092. Los Alamos National Laboratories: 2006.

[8] Müller, M.M. and Tichy, W.F. "Case study: extreme
programming in a university environment". In
Proceedings of 23rd International Conference on
Software Engineering. May 12-19, 2001. p. 537-544

[9] Perry, D.E., Sim, S.E., and Easterbrook, S.M. "Case
studies for software engineers". In Proceedings of
Software Engineering, 2004. ICSE 2004. Proceedings.
26th International Conference on. 2004. p. 736-738

[10] Post, D.E. and Kendall, R.P., "Software Project
Management and Quality Engineering Practices for
Complex, Coupled Multiphysics, Massively Parallel
Computational Simulations: Lessons Learned From
ASCI." International Journal of High Performance
Computing Applications, 2004. 18(4): 399-416.

[11] Post, D.E., Kendall, R.P., and Whitney, E. "Case study
of the Falcon Project". In Proceedings of Second
International Workshop on Software Engineering for
High Performance Computing Systems Applications
(Held at ICSE 2005). St. Louis, USA. 2005. p. 22-26

[12] Seaman, C.B. and Basili, V.R. "An Empirical Study of
Communication in Code Inspections". In Proceedings of
19th International Conference on Software Engineering.
Boston, MA. May 17-23, 1997. p. 96-106

[13] Shull, F., Carver, J., Hochstein, L., and Basili, V.R.
"Empirical Study Design in the Area of High
Performance Computing (HPC)". In Proceedings of
International Symposium on Empirical Software
Engineering. Noosa Heads, Australia. 2005. p. 305-314

[14] Van De Vanter, M.L., Post, D., and Zosel, M.E. "HPC
Needs a Tool Strategy". In Proceedings of Second
International Workshop on Software Engineering for
High Performance Computing System Applications (held
at ICSE 2005). St. Louis. 2005. p. 15

[15] Yin, R.K., Case Study Research : Design and Methods
(Applied Social Research Methods). 3rd ed. 2002: SAGE
Publications.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

