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Abstract 
 

The need for high performance computing 
applications for computational science and 
engineering projects is growing rapidly, yet there have 
been few detailed studies of the software engineering 
process used for these applications. The DARPA High 
Productivity Computing Systems Program has 
sponsored a series of case studies of representative 
computational science and engineering projects to 
identify the steps involved in developing such 
applications (i.e. the life cycle, the workflows, 
technical challenges, and organizational challenges). 
Secondary goals were to characterize tool usage and 
identify enhancements that would increase the 
programmers’ productivity. Finally, these studies were 
designed to develop a set of lessons learned that can 
be transferred to the general computational science 
and engineering community to improve the software 
engineering process used for their applications. Nine 
lessons learned from five representative projects are 
presented, along with their software engineering 
implications, to provide insight into the software 
development environments in this domain. 

1. Introduction 

Software written to solve scientific and engineering 
problems that require the use of high performance 
(massively parallel) supercomputers is an increasingly 
important class of applications. Software engineering 
processes and methods used to develop these 
applications varies from those used to develop other 

types of applications, such as in commercial IT. Some 
of these differences are highlighted in Section 2. 

The main goal of the work described in this paper is 
to better understand the software engineering issues 
that specifically influence the success or failure of 
scientific and engineering software. This paper 
describes a series of case studies of five such projects, 
sponsored by various US government agencies. 

The remainder of the paper is organized as follows. 
Section 2 provides the motivation for studying 
scientific and engineering projects. Section 3 gives an 
overview of the case study methodology used to gather 
the data. The five projects studied are described in 
Section 4. Section 5 discusses the lessons learned 
drawn from the whole set of studies along with their 
implications for software engineering. Finally, the 
conclusions are presented in Section 6. 

2. Background and Motivation 

Application software developed specifically for 
scientific and engineering purposes (often using high 
performance computers) has not been extensively 
reported on in the software engineering literature. This 
type of software can be developed for: simulations of 
physical phenomena, processing of large amounts of 
data, performance of complex calculations, and many 
other important problems that could not be solved by 
the development of traditional software. The presence 
of some unique characteristics of this type of software 
makes its study both interesting and valuable.  

The first unique characteristic that differentiates 
scientific and engineering software from its 
commercial IT counterpart is the requirements 
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discovery and gathering process. While most scientific 
and engineering projects are ultimately based on the 
underlying laws of nature, which are fixed, the 
application of those laws to a specific problem is often 
unknown at the start of the project. Most requirements, 
beyond some obvious high-level ones, are discovered 
during the course of the project. Therefore, many of 
these projects begin as research projects without a 
definitive relationship among deliverables, schedule 
and resources. 

Another distinguishing characteristic is that the 
main driver for these projects is, not surprisingly, 
correct science or engineering, rather than ensuring 
software quality through the use of sound software 
engineering practices. In fact, many of the projects are 
not given adequate funding or support to implement 
even basic software engineering principles. Another 
source of the often-encountered absence of software 
engineering discipline is that the teams are largely 
staffed by domain scientists and engineers rather than 
by formally trained software engineers. 

The third unique characteristic is that the 
developers tend to be averse to the “process”-oriented 
software development approaches which have been 
successfully used to manage risk on other types of 
software projects. This aversion is due in part to the 
lack of formal software engineering training and in 
part to the nature of the application domain. Many of 
the projects have long life-cycles that last for decades 
during which the model of science embodied in the 
software evolves as knowledge evolves. Developers 
tend to think they will have greater flexibility by not 
following rigid software development processes. 

The study of the application of software 
engineering principles to scientific and engineering 
computing has been increasing in importance and 
prominence. One indication of this prominence is the 
DARPA High Productivity Computing Systems 
Project (HPCS)1. The overall goal of the HPCS project 
is to develop the next generation of viable 
supercomputers and ensure their programmability. As 
part of the HPCS project, much effort has been 
devoted to studying the software engineering process 
for scientific and engineering projects. In addition, two 
ICSE workshops have focused on the interaction of 
software engineering and high performance computing 
[3, 4]. Papers on software engineering for scientific 
and engineering computing have also recently 
appeared in both software engineering conferences 
[13] high performance computing conferences [2] and 
other venues [10]. 

 
                                                           
1 http://www.highproductivity.org  

3. Case Study Methodology 

To gather information about software engineering 
within the scientific and engineering computing 
domain, we conducted a series of retrospective case 
studies.  The case study approach, as defined by Yin, is 
a well-understood method for gathering initial 
information [15]. This approach employs a set of 
qualitative, open-ended methods to explore a topic and 
develop hypotheses. The methods include data 
collection techniques like Document Reviews, 
Collection of Contextual Artifacts, Self-Reporting, and 
Interviews. Data collected during a case study using 
this broad set of methods can provide foundational 
knowledge that is useful for generating hypotheses. 
Similar case study approaches have been previously 
been employed in software engineering [1, 8, 9, 12]. 

Each case study reported in this paper explored the 
work of one project team along with the context in 
which that work was performed. The overall goal for 
each case study was to identify, as accurately as 
possible, the activities and practices that contributed to 
the success of a project and the activities that were 
counterproductive. The use of a standard set of 
methods across the series of case studies allowed for 
the collection of consistent and comparable data. By 
conducting multiple case studies on projects from 
different application domains (explained further in 
Section 4), general lessons learned were. The data 
collection methods were selected based upon time, 
security, and the nature of the topics to be explored. 

To ensure that the case studies were as successful 
and accurate as possible, the case study team consists 
of experts with different, relevant backgrounds: 
Computational Science and Engineering, Cultural 
Anthropology, and Software Engineering. In addition 
to their technical expertise, the case study team 
members also have extensive experience in the 
collection and analysis of survey and interview data.  

The case study methodology included these steps:  
1. Identify a feasible project and its sponsor. 

Gaining the support of the project sponsor (i.e. 
funding agency) is key for a successful case study. 
The sponsor’s support makes the project team 
more comfortable participating in the case study. 

2. Negotiate case study participation with the 
project team and sponsor. This negotiation 
involves both logistics (i.e., when and where to 
conduct the case study) and confidentiality (i.e., 
teams and individual team members must be 
confident that they cannot be identified by either 
their management or by outside readers. Also, 
teams must be assured that they will be given the 
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opportunity to review any reports to remove 
objectionable material prior to publication). 

3. Survey the project team with a pre-interview 
questionnaire. The pre-interview questionnaire 
serves two purposes: 1) it reduces the amount of 
time the case study team has to spend conducting 
an on-site interview, and 2) it allows the project 
team members to look up information that may not 
be available during a face-to-face interview. 

4. Analyze the questionnaire and plan on-site 
interviews. The responses to the questionnaire 
determine which topics need clarification during 
the on-site interview. Based on this information, 
an interview guide is created with the topics to be 
addressed during the interview. 

5. Conduct on-site interview. The interview 
consists of three steps. First, the project team gives 
an overview presentation. This presentation often 
addresses many of the items on the interview 
guide and allows the project team to communicate 
what they believe to be most important about the 
project. Second, questions are posed to the entire 
project team. Third, if the project team is large 
enough, it is divided into smaller groups for 
focused questions. During each of these interview 
sessions, there is a lead questioner, who is 
responsible for ensuring that all questions are 
covered. The other members of the case study 
team act as scribes and also ask follow-up 
questions based on their expertise. When possible, 
the interviews are taped and transcribed for further 
analysis. 

6. Analyze the on-site interview and integrate 
with the questionnaire. An initial list of findings 
is prepared by consolidating the information 
gathered through these two sources. 

7. Conduct follow-up with the project team to 
resolve unanswered questions. The initial 
findings along with any remaining unanswered 
questions are iterated with the project team until 
everyone is satisfied. 

8. Draft the case study report and iterate with 
project team and sponsor. Based on the 
information collected and the follow-up, a 
preliminary report is drafted. This report is 
circulated to both the project team and the sponsor 
to ensure that all parties involved agree with the 
accuracy and the anonymity of the report. 

9. Publish the case study report. 
 
The pre-interview questionnaire and on-site 

interviews specifically focused on the following topics:  
1. Goals, requirements and deliverables 

2. Project Characteristics, Structure, Organization 
and Identified Risks 

3. Code Characteristics and Structure 
4. Staffing 
5. Workflow and Workflow Management 
6. Verification, Validation and Testing 
7. Measurement of Success 
8. Lessons Learned 

4. Description of Projects  

Due to the classified nature of some of the projects, 
and the desire for anonymity by all of the projects, 
each has been given a pseudonym to remove any 
identifying characteristics. This approach is common 
when conducting case studies [15]. The following 
subsections provide the basic characteristics of the five 
projects studied, with more details on four of them 
published elsewhere (FALCON [11], HAWK [5], 
CONDOR [6], EAGLE [7], and NENE). Each project 
is characterized by its purpose, its development and 
execution environment (including languages used), and 
its users; this information is summarized in Table 1. 

4.1 FALCON Project 

The goal of the FALCON project, which is just 
beginning its useful life in its eleventh year, is to 
develop a predictive capability for a product whose 
performance involves the trade-off among many 
strongly coupled physical effects spanning at least ten 
orders of magnitude in each of the temporal and spatial 
scales. An accurate predictive capability is needed to 
reduce the dependence of the sponsor on large, 
expensive and potentially dangerous empirical tests to 
certify the product. 

The parallel programming model used in this 
project is Message Passing Interface (MPI). The target 
platforms are a shared-memory LINUX cluster with 
~1000 nodes and a large vendor-specific shared-
memory cluster with ~ 2000 nodes. The bulk of the 
code is written in an object-oriented instantiation of 
FORTRAN. The team has successfully captured some 
of the advantages of object-orientation, such as 
polymorphism and inheritance, while avoiding the 
pitfalls (especially for parallel machines) of many 
levels of inheritance and excessive use of templating. 
The major blocks of code are about 410,000 SLOC of 
FORTRAN, 50,000 SLOC of C, 200,000 SLOC of 
library code, and about 30,000 SLOC of Perl, Python 
and Unix scripts. Perl and Python are primarily used 
for build and test scripts. 
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FALCON is used by an external team of highly 
knowledgeable and experienced product engineers to 
assess the potential behavior of new and existing 
product designs. Validation by the users is done by 
comparing the output of the software to data from past 
experiments and a few new experiments. The 
engineers’ level of experience and expertise is 
sufficiently high that they can not only identify defects 
and model deficiencies, but can often identify the 
source of the defects and needed model improvements. 
In a very real sense, the users participate constructively 
and effectively in the development, verification and 
validation of the code.  

FALCON is extensively documented on an internal 
web-site (approximately 400 Mbytes of HTML files). 
The documentation consists of descriptions of the 
physics; the algorithms and models; the input and 
output; and instructions for executing the code. This 
documentation has proved to be highly useful.  

4.2 HAWK Project 

The purpose of the HAWK project was to develop a 
computational predictive capability to analyze the 
manufacturing process of a family of composite 
material products. It was designed to allow the sponsor 
to minimize the use of time-consuming, expensive 
prototypes for ensuring efficient product fabrication. 
The manufacturing process is governed by three 
physical processes: 1) chemical reactions, 2) heat 
transfer, and 3) fluid flow through a porous medium. 

HAWK employs an unstructured, fixed finite 
element mesh to represent and resolve the objects to be 
manufactured. These objects can exhibit very complex 
geometries which may require a significant effort to 
represent in HAWK (months of staff-time). The 
current version of HAWK evolved from an earlier 
version and uses a message passing architecture based 
on MPI (targeted to machines like the SGI Origin 
3900). Portability is important for HAWK. Up to this 
point, it has been successfully ported to hardware 
developed by SGI (Origin® 3900), Linux Networx 
(Evolocity® Cluster), IBM (P-Series® 690 SP) and 
Intel-based Windows platforms.  

Like FALCON, HAWK was developed using 
multiple languages. There are approximately 134,000 
lines of executable code in the program library of 
which 67% are written in C++, 18% in C, and the 
remaining 15% primarily in FORTRAN90 and Python. 
The finite element “objects” and object manipulation is 
coded in C++ (a strong contrast to the FALCON 
project, which is based primarily on an object-oriented 
instantiation of FORTRAN77); the FORTRAN90 code 
comes primarily from third-party suppliers. 

HAWK has been deployed to both internal and 
external product engineers. There are only a small 
number of users (on the order of tens of users), so the 
development team is able to provide the needed 
support. Work on this project is currently suspended. 

4.3 CONDOR Project 

The purpose of the CONDOR project was to 
develop a simulation capability to analyze the behavior 
of a family of materials when placed under extreme 
stress. The CONDOR project began in the late ‘80s; its 
earliest antecedent traces back to the late ‘60s. The 
objects of the simulations are multi-material physical 
entities with complex geometries. CONDOR 
simulations allow the sponsor to minimize the use of 
time-consuming, expensive tests to forecast 
performance, and provide an alternative to infeasible 
physical testing. The predictive capability addressed by 
CONDOR is accomplished by integrating a set of 
initial value equations for the conservation of: 1) mass, 
2) momentum, and 3) energy. 

CONDOR is supported on platforms ranging from 
PCs to parallel supercomputers. A typical PC 
application is 106 cells running for a few hours to a 
few days. The largest application is on the order of 
5x109 cells executing on 4000 processors. A typical 
parallel application is on the order of 108 cells 
executing on 100 to a few 100s of processors. 
CONDOR tends to be one of the first applications 
ported to new hardware platforms at its parent 
institution. Like FALCON, CONDOR uses MPI for 
parallelization and was developed primarily in 
FORTRAN77 (approximately 85% of the ~200,000 
SLOC), with the remainder written in FORTRAN90, 
C, or Slang.  

CONDOR has been deployed to both internal and 
external users. There are several thousand occasional 
users and hundreds of routine users. For PCs, it is 
distributed on a per seat basis using a home grown 
licensing manager similar to Flexlm®. 

4.4 EAGLE Project 

The EAGLE project had two important goals (1) to 
determine if parallel, real-time processing of sensor 
data guided by non-traditional algorithms was feasible 
for a particular application, and (2) to demonstrate the 
feasibility on specialized HPC hardware actually 
deployed in the field (this project is an example of an 
embedded HPC application). Thus, the EAGLE project 
was a demonstration project with a large research 
component and was not expected to result in a 
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production-ready software application. Consequently, 
there are currently no users. 

EAGLE is the second half of a two-part project. 
Prior to its start, serial Matlab® prototypes were written 
by algorithm specialists (typically Ph.D. physicists). 
One of these prototypes was chosen to be a 
“specification” and “reference code” for the EAGLE 
implementation. Thus, the principal task of EAGLE 
was to create a parallelized C++ implementation of the 
algorithm and demonstrate real-time (or near real-time) 
performance. The use of a Matlab prototype is an 
important difference between this project and the 
FALCON, HAWK, and CONDOR projects. 

The algorithmic foundations of EAGLE are based 
on Fast Fourier Transforms, median filtering, sorting, 
hypothesis testing, and direct solution methods for 
systems of simultaneous equations. Parallelization in 
MPI was straightforward due to the nature of the 
algorithms. A unique characteristic of EAGLE was its 
real-time aspect. The more common type of HPC 
problem involves computations on a very large data set 
producing a single result, whereas EAGLE receives a 
continuous stream of input data and produces a 
continuous stream of output data.  

Like HAWK, EAGLE made extensive use of C++. 
Unlike HAWK, the EAGLE team developed the bulk 
of the code using an institutionally-supported C++ 
library (~70% or 25,000 SLOC). The use of the library 
and a Matlab prototype are distinctive features of this 
project, and are considered best practice by the host 
institution. JAVA is also used for pre-processing.  

The target hardware for the real-time demonstration 
of EAGLE was a specialized computer that can be 
deployed on a military platform, while most of the 
development was performed on SUN Sparcs 
(Solaris®) and PC (Linux) with friendlier development 
environments. This platform change represents a 
novel, but critical, role for portability.  

4.5 NENE Project 

The NENE project is a suite of software 
applications that can be combined to allow researchers 
to calculate the properties of molecules using a variety 
of computational quantum mechanical models. This 
project began in the late 1980’s and is still very active. 
The inherently global nature of the particle (atom, ion, 
electron, molecule) interactions described by quantum 
mechanics makes the likelihood of widespread 
parallelism remote. The NENE project began as a 
research code and has maintained a strong research 
flavor throughout its existence. For the most part, the 
funding has emphasized the domain science rather than 
software engineering or computer science attributes.  

One important characteristic of this project is the 
large number of developers. Much of the development 
is done in a university environment; as a result, as 
students graduate, there is turn-over in the 
development team. In addition, a sizeable portion of 
the code is developed by external collaborators. The 
NENE project has a designated code librarian who 
ensures that any code included in a release is 
thoroughly tested prior to inclusion. Partially as a 
result of this situation, NENE has dealt with some 
daunting project risks with a rather unorthodox 
approach. For example, rather than deploying a 
sophisticated configuration management tool to 
manage the large program library, NENE has adopted 
the approach of hand integrating every line of code by 
the co-PI. This approach works because (1) the code is 
very modular with a slender program backbone, and 
(2) the distributed development community is very 
familiar with the code and thoroughly tests 
enhancements before submission (thereby making the 
job of integration simpler). 

NENE now has about 20,000 installations and an 
estimated 100,000 users worldwide. There are over 
5400 citations to the basic paper describing the project. 
Due to its widespread usage, there is a strong need for 
portability. There is essentially one version of the code 
(750,000 LOC), written in FORTRAN77 subset of 
FORTRAN90, that executes on all commonly used 
platforms (except on Windows-based PCs). A separate 
version of the code optimized for Windows PCs exists, 
but it is not supported by the core NENE team. 

5. Lessons Learned 

The analysis of the five projects described in 
Section 4 revealed some common patterns that resulted 
in nine lessons learned. For each lesson, this section 
presents support from the case studies and the 
implications of that lesson for software engineering. 

5.1 Verification and Validation is very difficult 
in this environment. 

Verification is the demonstration that the 
application correctly solves the equations embodied in 
the solution algorithm. Validation is the demonstration 
that the application accurately models all the important 
effects. Validation ensures that the software correctly 
captures the laws of nature by comparing its 
predictions to experimental data.  

Validation is problematic because it is often 
difficult, or even impossible, to establish the correct 
output or result a priori. The goal of many of these 
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projects is to simulate some physical phenomena. In 
many cases, the simulation falls into one of two 
categories. One type of simulation explores new 
science, which by definition does not have a known 
result. The second type of simulation cannot be 
experimentally replicated due to safety, expense, or 
legal constraints. In this case, there is no experimental 
result available against which to judge the accuracy of 
the simulation result. 

In cases where a correct answer is known and 
available for verification, incorrect outputs or results 
can be determined, at which time the problem shifts to 
identification of the source of the problem, which can 
be an equally daunting challenge. The development 
process allows for at least three potential sources of 
defects. The first step in the development process is for 
a domain expert to create a model of nature (usually 
done mathematically). Defects could enter at this step 
if the domain expert builds an incorrect model, i.e. gets 
the science wrong. The second step is to translate that 
model into an algorithm, or set of algorithms, that can 
be later implemented in software. Even if the original 
model is correct, defects can enter at this step if the 
model is incorrectly encoded into an algorithm. 
Finally, the algorithms are implemented in software. 
Again, defects can enter during this step through 
inaccurate translation of the algorithm into code. 

These issues combine to make the task of 
verification and validation for scientific and 
engineering applications very difficult. A member of 
the EAGLE team provided another reason why 
verification and validation is difficult:  

 

V&V is very hard because it is hard to come up 
with good test cases. 

Table 1 – Code Characteristics 

 FALCON HAWK CONDOR EAGLE NENE 
Application 

Domain 
Product 

Performance Manufacturing Product 
Performance 

Signal 
Processing Process Modeling 

Duration ~ 10 years ~ 6 years ~ 20 years ~ 3 years ~ 25 years 
# of Releases 9 (production) 1 7 1 ? 

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3 FTEs ~10 FTEs (100’s 
of contributors) 

Customers < 50 10s 100s None  ~ 100,000 
Code Size ~ 405,000 LOC ~ 134,000 LOC ~200,000 LOC < 100,000 LOC 750,000 LOC 
Primary 

Languages 
F77 (24%), 

C (12%) 
C++ (67%), 

C (18%) F77 (85%) C++, 
Matlab F77 (95%) 

Other 
Languages 

F90, Python, 
Perl, ksh/csh/sh Python, F90 F90, C, Slang Java Libraries C 

Target 
Hardware 

Parallel 
Supercomputer 

Parallel 
Supercomputer 

PCs to Parallel 
Supercomputer 

Embedded 
Hardware 

PCs to Parallel 
Supercomputer 

Status Production Production 
Ready Production Demonstration 

Code Production 

 
The inability to fully validate their results led the 
CONDOR team leader to take an approach summed up 
in the following comment: 
 

I have tried to position CONDOR to the place 
where it is kind of like your trusty calculator – it is 
an easy tool to use. Unlike your calculator, it is 
only 90% accurate … you have to understand that 
the answer you are going to get is going to have a 
certain level of uncertainty in it. The neat thing 
about it is that it is easy to get an answer in the 
general sense <to a very difficult problem>.” 
 
The implication of this lesson is that the traditional 

methods of testing software and comparing the output 
to an expected result are not sufficient. Scientific and 
engineering developers need to identify additional 
methods to ensure software quality and to describe the 
limits of the applicability of the software. 

5.2 The primary language of a project typically 
does not change over time. 

Two interesting questions arise about this 
community: (1) Why is FORTRAN still the dominant 
language? And, (2) Why have more modern, higher-
level languages not been adopted? The developers of 
these projects have all chosen what they believed to be 
the best programming languages available to them. 
Because of the long duration of the project lifecycle, 
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this choice is often strongly influenced by issues like 
portability and maintainability. The case studies 
revealed that once that language is chosen, it typically 
does not change.  

For example, developers of the NENE project chose 
FORTRAN because of its ease of learning for the 
scientists, compared with C++, (students and 
researchers can become productive in a few weeks) 
and its portability (a main goal of the project). 
FORTRAN also produces code that performs well and 
is supported on large-scale supercomputers. The 
NENE project has stayed with this choice even though 
FORTRAN is, for the most part, no longer taught in 
the universities. There would have to be a very 
compelling reason for NENE to change languages. 
Any new language would have to provide some added 
benefits without removing the advantages of 
FORTRAN.  

This trend was observed in all of three of the long-
lived projects. FALCON, CONDOR and NENE all 
stuck with their original choice of FORTRAN77, for 
the most part, despite the advances (and advantages for 
parallel processing environments) of FORTRAN90 
and Co-Array FORTRAN.  

The constancy of the programming language is also 
motivated by the users of the code. Many of the long-
lived projects also have many users (sometimes 
numbering into the thousands) that interact with the 
software at the code level. Changing from the primary 
language would require retraining of these users. For 
most projects, the infeasibility of retraining users is 
another barrier to changing languages. 

5.3 The use of higher-level languages is low. 

The teams studied have avoided using higher-level 
languages (e.g. Matlab) for the main application code. 
This avoidance is due in part to the current limitations 
of Matlab. While Matlab is a good language for 
prototyping algorithms, code written in Matlab is 
usually an order of magnitude slower than code written 
in C, C++, or FORTRAN. Thus, Matlab is generally 
used to develop and test solution algorithms. Once a 
successful algorithm is developed, it is then recoded in 
another language to achieve improved performance. 

Specifically, CONDOR used 85% FORTRAN77 
with the remainder in FORTRAN90, C, or Slang. 
HAWK contains 67% C++ and 18% C, with the 
majority of the other 15% being FORTRAN and 
Python. FALCON is mostly in FORTRAN, but it also 
contains code written in at least 5 lower level 
languages (e.g. Python and Perl). Unlike the first two 
projects, the FALCON project did introduce object-
oriented features in a backplane with FORTRAN 

77/90 modules, but performance constraints greatly 
restricted their use. EAGLE was the only project that 
used Matlab. But, even in this case, it was limited to 
implementation of prototypes and development of the 
specification for the executable code, most of which 
was ultimately written in C++.  

While C++ is surely a higher level language than 
FORTRAN, an interesting fact is that HAWK and 
EAGLE restricted their use of C++ to a set of features 
that fell mostly within the C subset of C++ (i.e. the 
higher-level features of C++ were avoided). 

A specific example of the motivation for avoiding 
higher level languages can be seen in a comment made 
by one of the CONDOR developers (addressing the 
efficiency of the code created by a compiler): 

 
I’d rather be closer to machine language than more 
abstract. I know even when I give very simple 
instructions to the compiler, it doesn’t necessarily 
give me machine code that corresponds to that set 
of instructions. If this happens with a simple do-
loop in FORTRAN, what happens with a monster 
object-oriented thing? 
 
The implication of this lesson along with the 

previous lesson is that scientific and engineering 
developers place more constraints on the choice of 
programming language than developers in the 
commercial IT domain. To be adopted by scientific 
and engineering programmers, a language has to be 
easy to learn, offer reasonably high performance, 
exhibit stability, and give developers confidence in the 
validity of the resulting machine instructions. 

5.4 Developers prefer the flexibility of the 
UNIX command line over an IDE. 

The case studies revealed an absence of IDE 
(Integrated Development Environments) usage by the 
developers. The experienced developers tended to 
dislike the rigidity they felt most IDEs imposed on 
their development activities. These developers 
typically knew what they wanted to do and were much 
more comfortable, and they believed, more efficient 
when typing commands on the command line rather 
than navigating a series of nested menus. The reasons 
that IDEs tend to be avoided is summed up by a 
member of the EAGLE team. The developer believed 
that IDE’s were not helpful because: 

 
They all [the IDEs] try to impose a particular style 
of development on me and I am forced into a 
particular mode.  
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Another common belief was that developers had 
more control when they were “closer to the metal” (i.e. 
interacting more directly with the hardware). The 
implications of this lesson are that developers do not 
adopt IDEs because 1) they do not trust an IDE to 
automatically perform a task in the same way they 
would do it themselves; and 2) they expect greater 
flexibility than is provided in current IDEs; 3) they 
may prefer to use what they know rather than change. 

5.5 Externally developed software is a risk. 

Because of the very long development and 
deployment phases, these projects tend to avoid using 
externally developed software that may disappear or 
become unsupported during the lifetime of the project. 
Rather than relying on such software, the teams prefer 
to develop this software in-house or to use open-source 
software. Open-source software provides the benefit of 
decreased development time through the use of 
externally developed software while at the same time 
providing the development team with the security that 
the software will not disappear (because the team has 
access to the source code and could maintain it if other 
support became unavailable). 

One exception to this rule is the NENE project, 
which made use of a large amount of externally 
developed software. In order to address the inherent 
risk in this approach, a librarian was designated to 
thoroughly test any code before integrating it into the 
main codebase. The developers set the project up so 
that the presence or absence of any externally 
contributed software does not endanger commitments 
to the sponsor. Therefore, NENE is not vulnerable to 
external developers failing to deliver. It is vulnerable 
to the core developers failing to deliver. 

Ironically, the main problem faced by many 
computational science and engineering projects is the 
lack of good tools for parallel development (especially 
for debugging). When quality commercial tools are 
developed and become successful, the host company is 
often bought by another company and the tool is 
discontinued. If a project has planned its development 
activities around the presence of such a tool, they must 
then scramble to find, or more likely, develop an 
adequate replacement. 

The implication of this lesson is that the tool 
situation in HPC development is tenuous because of 
the tension between code developers and tool 
developers. On one side, the code developers do not 
trust the longevity of or support for third-party tools. 
On the other side, the tool vendors cannot spend the 
effort required to build and support proper tools due to 
the lack of a stable market. Therefore, this Catch-22 

situation has resulted in low usage of external software 
and tools. The problem of third-party software has also 
been identified by other researchers [14]. 

5.6 Performance competes with other 
important goals 

While performance (i.e. speed) is an important 
requirement for these projects (as evidenced by the fact 
that they all have targeted parallel supercomputers), 
other non-functional requirements are considered just 
as important in the long run. Performance is important 
only to the extent that the software can be used by its 
customers to meet their deliverables and milestones. 
The longevity of these projects, along with the relative 
frequency of new computing platforms, necessitate that 
portability and maintainability be considered along 
with performance as important, and often competing, 
goals. The ability to easily port a project to new 
machines increases the likelihood of its long-term 
success. Conversely, if a team spends a large amount 
of effort tuning the performance for one specific 
platform, that effort is wasted when a new platform 
becomes available prior to the release of the software. 
Members of the CONDOR team highlighted this issue 
in the following comment: 

 
People want the environment [provided by 
CONDOR] on their laptops, their workstations and 
then log onto an HPC center on the other coast, put 
it there, run it, and then take the results back down 
to their workstations. 
 

Overall the most highly ranked project goals were: 
1. Correctness 
2. Performance 
3. Portability 
4. Maintainability 

Of these goals, portability was the only one that was 
ranked as having “high” importance by all of the teams 
studied.  

The implication of this lesson is that the software 
engineering methods needed in scientific and 
engineering software may be different from those 
needed for more traditional IT software. Methods must 
be chosen and tailored so they are properly aligned 
with the software development goals. 
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5.7 Agile methodologies are better accepted by 
scientific and engineering code developers than 
more traditional methodologies. 

Scientific and engineering projects appear to lend 
themselves to the use of agile software development 
approaches. In this case, “agile” refers to the 
philosophical approach of agile methods rather than to 
any particular method, such as eXtreme Programming. 
Because many of these projects are doing new science 
and the requirements are not (and cannot be) known in 
detail in advance, operating in a rigid plan-driven style 
(as some sponsors require) is not feasible or 
productive. These teams need the flexibility to 
experiment with different methods quickly to find ones 
that work. While some form of planning is essential to 
success, rigid software management is avoided.  

Most of the teams studied have been successfully 
operating with an agile philosophy (although they did 
not always realize it) for decades -- long before the 
term “agile” entered the software engineering 
vocabulary. These teams have tended to favor 
individual team members and good practices over 
more rigid processes and tools.  

The implication of this lesson is that existing 
software engineering development methodologies and 
philosophies need to be tailored for scientific and 
engineering software development. Rigid, process-
heavy approaches tend not be used, both for technical 
reasons (i.e. unstable or unknown a priori 
requirements) and cultural reasons (i.e. the developers, 
who tend to be scientists rather than engineers, tend to 
view “process” unfavorably). 

5.8 Multi-disciplinary teams are important to 
the success of these projects. 

The staffing profiles of these projects show the 
multi-disciplinary nature of the problems being solved. 
In total, computer scientists make up less than 20% of 
the team members (although on different teams that 
percentage varies from 0% - 33%), with the rest being 
domain scientist or engineers. The main reason for this 
staffing profile is presence of two types of complexity: 
domain complexity and software complexity.  

Domain complexity is evident in the fact that much 
of this software is written to simulate highly complex 
physical or engineering behavior. In fact, many of the 
applications require a PhD in physics or a branch of 
engineering just to understand the problem. The teams 
have found it easier, and more practical, for the 
domain scientists and engineers to learn how to write 
software than for software engineers to learn all of the 

relevant science or engineering concepts. Conversely, 
to achieve performance and flexibility in such complex 
applications, the teams also are in need of software 
engineering expertise. A member of the HAWK team 
put it this way: 

 
In these types of high performance, scalable 
computing [applications], in addition to the physics 
and mathematics, computer science plays a very 
major role. Especially when looking at 
optimization, memory management and making [the 
code] perform better…You need a multi-
disciplinary team. It [C++] is not a trivial 
language to deal with…You need an equal mixture 
of subject theory, the actual physics, and 
technology expertise. 

5.9 Success or failure of the project depends on 
keeping customers satisfied (in addition to 
sponsors). 

This lesson is not unique to computational science 
and engineering, but it is important to understand it 
within the context of the scientific and engineering 
software community. These projects appear to have a 
different business model than for more traditional 
commercial IT software. Funding often comes from a 
governmental agency while the customers may or may 
not be part of that same agency. Therefore, the success 
of the project depends on satisfying both 
constituencies. In the long run, keeping the customers 
happy by responding to their needs is an important 
factor in the success of any project. But, even if the 
development team meets all the requirements and 
milestones set by the sponsor, it may not succeed 
without a supportive user community. For example, 
because of the lack of users, HAWK has been 
suspended despite its success technically. Balancing 
the needs of all stakeholders can be a challenge. 

6. Summary 

This paper discussed five case studies of scientific 
and engineering software development projects 
sponsored by the US Department of Defense, 
Department of Energy, and National Science 
Foundation. Each project came from a different 
scientific or engineering domain with different overall 
goals. Based on the cross-analysis of these projects, we 
presented a series of lessons learned in Section 5. 

Overall, the work described in this paper  led to the 
following conclusions. First, we provided some insight 
into the difficulty of verification and validation. 
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Second, we highlighted why agile development 
philosophies closely fit these teams. Third, we came to 
an understanding of why these projects do not adopt 
higher-level languages, like Matlab, when doing so 
would appear to provide advantages. Fourth, we 
highlighted that while performance is important in this 
domain (hence the use of parallel supercomputers) it is 
often not the most important goal. Fifth, we explained 
that there is an expertise gap because of the complexity 
of the code and difficulty of the underlying domain. 
Sixth, we showed why these software development 
teams avoid IDEs. Seventh, we explained why teams 
favor tools developed in-house (or open-source) rather 
than commercial third-party tools. Each lesson was 
supported with specific observations. 

The goal of this paper is to provide information that 
can be useful for the software engineering community 
as well as the computational science and engineering 
community. For the software engineering community, 
this paper highlighted some of the reasons why the 
development process for this type of software is 
different from the development process for commercial 
IT software and why some of the traditional software 
engineering approaches have not been adopted. Some 
of these differences are inherent to the domain, while 
others could be addressed through education (e.g. 
learning a new IDE). In addition, we have highlighted 
some instances where existing software engineering 
research is inadequate for this domain. For the 
computational science and engineering community, 
this paper provided some insights that could guide the 
improvement of the software engineering process. 
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