
An Empirical Evaluation of a Testing and Debugging

Methodology for Excel
Jeffrey Carver

Dept. of Computer Science and
Engineering
Box 9637

Mississippi State, MS 39759
+1-662-325-0004

carver@cse.msstate.edu

Marc Fisher II
Dept. of Computer Science and

Engineering
256 Avery Hall

University of Nebraska – Lincoln
Lincoln, NE 68588

mfisher@cse.unl.edu

Gregg Rothermel
Dept. of Computer Science and

Engineering
360 Avery Hall

University of Nebraska – Lincoln
Lincoln, NE 68588

grother@cse.unl.edu

ABSTRACT
Spreadsheets are one of the most commonly used types of

programs in the world, and it is important that they be sufficiently

dependable. To help end users who create spreadsheets do so

more reliably, we have created a testing and debugging

methodology and environment for use in spreadsheets, known as

the WYSIWYT methodology. Our prior experiments with

WYSIWYT show that users can utilize it to ensure that their

spreadsheets are more dependable, but these experiments to date

have considered only an unfamiliar prototype spreadsheet

environment, and have not involved spreadsheet creation tasks.

In this work we conducted a controlled experiment that addresses

these limitations. The results of this study indicate that the use of

WYSIWYT did not affect the correctness of spreadsheets created

by users, but it did significantly reduce the amount of effort

required to create them. Further, the subjects’ evaluation of the

help provided by WYSIWYT was very positive. Our results

provide several insights into the use of the WYSIWYT

methodology by end users.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Testing

tools; H.4.1 [Information Systems]: Information Systems

Applications – Spreadsheets

General Terms

Reliability, Experimentation, Human Factors.

Keywords

End-user software engineering, empirical study, human subjects

1. INTRODUCTION
Spreadsheets are used by a wide range of non-professional

programmers to perform many important tasks, such as managing

retirement funds, forecasting revenues, and even assessing the

quality of batches of pharmaceutical products. Evidence shows,

however, that spreadsheets often contain faults, and that these

faults can have severe consequences. For example, a formula

error caused the stocks of Shurgard Inc. to be devalued after

employees were overpaid by $700,000 [28], and a cut-and-paste

error in a bidding spreadsheet cost Transalta Corporation 24

million dollars through overbidding [12].

To address this problem, researchers have been pursuing various

approaches for providing help to end users, including unit

inference and checking systems [1-3], visualization techniques

[10, 11, 27], interval analysis techniques [4, 9], and automatic

generation of spreadsheets from models [13]. Commercial

spreadsheet systems such as Microsoft Excel have also

incorporated several tools for assisting with spreadsheet

dependability, including dataflow arrows, anomaly detection

heuristics, and data validation facilities.

In our own prior research, we have created an integrated family of

approaches to help end users improve the dependability of their

spreadsheets. At the core of these approaches is a dataflow testing

methodology that helps spreadsheet users address potential

problems in cell references -- a prevalent source of spreadsheet

errors [19, 20]. This WYSIWYT (What You See Is What You

Test) methodology [22, 23] uses visual devices to provide

feedback about test coverage of the spreadsheet relative to a

dataflow adequacy criterion. The methodology also incorporates

techniques for automated test case generation [14], fault

localization [21, 25, 26], test reuse and replay mechanisms [15],

and the use of assertions [5, 9].

We have performed several empirical studies considering various

aspects of the WYSIWYT methodology (for details see Section

2). Overall, these studies suggest that the WYSIWYT test

adequacy criterion and fault localization devices can be effective,

and end users without specific training in the underlying testing

theories can use the methodology.

Results such as these are encouraging; however, to date, all of our

research and studies of the WYSIWYT methodology and other

spreadsheet dependability mechanisms have been performed using

the research spreadsheet environment Forms/3 [7], an

environment unfamiliar to participants. In addition, our studies of

human subjects have always involved spreadsheets given to the

subjects, rather than spreadsheets created by the subjects. These

factors pose threats to both the external and internal validity of the

conclusions drawn about the efficiency and effectiveness of the

WYSIWYT methodology.

© ACM, (2006). This is the author's version of the work. It is posted

here by permission of ACM for your personal use. Not for

redistribution. The definitive version was published in the Proceedings

of the International Symposium on Empirical Software Engineering,

Sept. 21-22, 2006. http://doi.acm.org/10.1145/1159733.1159775

mailto:carver@cse.msstate.edu
mailto:mfisher@cse.unl.edu
mailto:grother@cse.unl.edu

Figure 1: Grades spreadsheet in WAFFELL

In this research, therefore, we have performed a controlled

experiment to investigate the abilities of end-user programmers to

use the WYSIWYT methodology implemented in Excel. We

investigate the effectiveness and efficiency of these users in

performing a spreadsheet creation task.

The remainder of this paper is organized as follows. Section 2

provides background information on the WYSIWYT

methodology and on prior empirical studies related to this work.

Section 3 describes our experiment, including subjects, tasks,

design, and procedures. Section 4 presents and analyzes our data.

Section 5 describes threats to the validity of our study, and

Section 6 provides more qualitative discussion of our results.

Finally, Section 7 concludes and discusses future work.

2. BACKGROUND
The current state of the WYSIWYT methodology is the

culmination of a large amount of research and empirical work. In

Section 2.1 we describe the basic WYSIWYT methodology, and

in Section 2.2 we review the previous empirical work.

2.1 The WYSIWYT Methodology
The “What You See Is What You Test” (WYSIWYT)

methodology (hereafter referred to simply as “WYSIWYT”)

attempts to bring the benefits of formal white-box testing and fault

localization strategies, originally created for traditional

programming languages, to end users using spreadsheet

languages. WYSIWYT has been developed as an integrated

family of techniques that support testing [22, 23], fault

localization [21, 25, 26], test case generation [14], test reuse and

replay [15], and the use of assertions [5, 9]. WYSIWYT has been

prototyped in two spreadsheet languages. The first, Forms/3, is a

research spreadsheet language designed to explore the boundaries

of the spreadsheet paradigm [7, 23]. More recently, a prototype,

WAFFELL (WYSIWYT and Analysis Framework For Excel-Like

Languages), has been developed for Microsoft Excel, the most

commonly used spreadsheet environment [16]. The remainder of

this discussion focuses on the testing and fault localization

features of WAFFELL, the features and environment that we will be

using for our study.

Figure 1 displays a simple “Grades” spreadsheet loaded in

WAFFELL. WYSIWYT uses simple graphical devices displayed on

top of the spreadsheet to guide the user’s testing and debugging

efforts. In this example, notice that several of the cells have

colored borders (ranging from gray to black in the figure) along

the right or bottom edges, checkboxes, and shaded interiors. The

colored borders serve two purposes. First, they group together

cells that have similar formulas (e.g. cells M2:M6 in Figure 1);

each such group shares a border along its right and bottom edge

[8, 16]. This grouping allows the methodology to scale to large

spreadsheets that have many duplicated cell formulas. The second

purpose of the borders is to indicate how “tested” (i.e. how much

coverage has been achieved in terms of a data-flow coverage

criterion [16, 22, 23]) the cells are. This “testedness” is displayed

using a continuous color range from red (0% tested, gray in

Figure 1) to blue (100% tested, black in Figure 1).

The checkboxes in the cells indicate places where a user can make

testing decisions. When the user clicks on a checkbox, they see

two choices: a checkmark or an x-mark (see cell M4 in Figure 1).

If the user determines that the current value in the cell is correct

relative to the current inputs, he or she can click on the

checkmark. This action causes all of the underlying data-flow

edges that reach that cell’s value to be marked as covered,

increasing the testedness values of the cells that contribute to the

value in the cell marked. If the user decides that the current value

is incorrect, they can click the x-mark. When an x-mark is placed

on the spreadsheet, the interiors of the cells that contributed to the

bad value are shaded pink or red (various shades of gray in Figure

1) to indicate that they have contributed to the calculation of an

incorrect value [21, 25, 26]. The shade of red is based on the

number of x-marks and checkmarks that the cell contributed to,

with the darkest shaded cells (e.g. cell L3 in Figure 1) indicating

the cells most likely to contain a fault.

2.2 Previous Empirical Work
There has been considerable work concerned with end-user

programming in a variety of environments (e.g. [17, 29]). There

have also been a large number of studies concerned with the

correctness of spreadsheets and the errors people make when

working with spreadsheets (see [20] for an overview of many of

these studies). This work has focused on discovering causes and

numbers of errors in spreadsheets, and has led to a great deal of

research into tools and techniques for reducing errors in

spreadsheets [1, 3, 4, 10, 13]. Aside from our own work

evaluating aspects of WYSIWYT, however, there has been very

little evaluation of these techniques with actual spreadsheet users.

The earliest WYSIWYT studies focused on the testing features of

WYSIWYT. The first of these studies considered the fault

detection capabilities of the underlying data-flow coverage

criterion in Forms/3 without considering actual users. The study

showed that test suites that covered the data-flow relationships in

the spreadsheet exposed more seeded faults than ad hoc test suites

of the same size [23].

The next important study of the WYSIWYT testing features

focused on computer science students using WYSIWYT to test

Forms/3 spreadsheets that were provided to them by the

researchers. This study showed that subjects who used

WYSIWYT tested the spreadsheets better (in terms of data-flow

coverage) and more efficiently (in terms of redundancy) than

subjects who did not use WYSIWYT. It also showed that

WYSIWYT reduced the subjects’ overconfidence in the

correctness of the spreadsheets (a commonly cited problem) [24].

The third major study of WYSIWYT’s testing features examined

the ability of business students, without significant programming

experience, to use WYSIWYT to perform simple maintenance

tasks on Forms/3 spreadsheets. This study showed that these

students were able to use WYSIWYT’s testing features while

performing their tasks, that the subjects using WYSIYWT

displayed significantly more testing activity than subjects not

using WYSIWYT, and that subjects with WYSIWYT performed

the task more accurately than subjects without WYSIWYT [18].

In addition to the foregoing studies of WYSIWYT’s testing

features, there have also been two studies of the fault localization

features of WYSIWYT. These studies focused on the ability of

different fault localization techniques to find errors in Forms/3

spreadsheets. The studies used simulations and did not use actual

human subjects, although transcripts from other studies with

human subjects were used to simulate human testing and

debugging behavior. These studies showed that the fault

localization techniques employed by WYSIWYT could find errors

in the spreadsheets, and revealed important trade-offs between the

different techniques [25, 26].

Beyond these studies, there have been numerous studies

examining features of WYSIWYT other than testing and fault

localization [5, 9, 14]. WYSIWYT has also been used as an

environment for studying user motivation [30] and gender

differences in problem solving [6].

These prior studies have gradually refined our understanding of

WYSIWYT and its use. However, these studies have suffered

from two major shortcomings. First, all of these studies have been

performed in the Forms/3 environment, an environment

unfamiliar to the subjects participating in the studies (which could

impact how useful users find WYSIWYT to be), and with

significant differences from more traditional spreadsheet

environments such as Excel (e.g. in Forms/3 groups of cells with

shared formulas can be explicitly created by the user, whereas in

Excel such groups are created through copy and paste actions that

need to be manually maintained as the spreadsheets evolve).

Second, in all of these studies the participants used spreadsheets

that were given to them by the researchers rather than

spreadsheets they had created themselves. To address these

limitations, further studies in which the subjects use a more

traditional spreadsheet environment and create their own

spreadsheets are needed.

3. Study Design
The goal of this study was to determine whether the WYSIWYT

methodology can assist end users in creating correct spreadsheets,

when those users work in a traditional (and familiar) spreadsheet

authoring environment. In particular we posed the following

hypotheses:

H1: The use of WYSIWYT will improve the correctness

of end users’ spreadsheets.

H2: End users will be able to create spreadsheets more

quickly when using WYSIWYT.

H3: End users will be able to understand and use the

WYSIWYT methodology.

3.1 Subjects
In this study, we had 38 students from three business technology

courses at Mississippi State University participate as subjects.

Two of the courses were sophomore-level design and analysis of

spreadsheet courses, one with 14 students and the other with 10,

and the other course was a senior-level office information systems

course with 14 students. The study occurred during the tenth week

of a fifteen-week semester. The majority of the students (27) were

Business Information Systems majors. There were 17 males and

21 females. In terms of experience creating spreadsheets, only 8

subjects had previously created spreadsheets in a professional

(business) environment.

3.2 Variables and Measures
To understand the impact of the WYSIWYT methodology, we

identified a specific set of variables and data to collect. (The

variables are summarized in Table 1.)

3.2.1 Independent Variables
There were two independent variables that could have an impact

on the outcome of the study. The first variable, the variable of

greatest interest, was whether the subjects used the WYSIWYT

methodology (WYSIWYT vs. No-WYSIWYT). We refer to this

variable as the Treatment.

In order to allow each student to use both approaches, we

developed two spreadsheet creation tasks. For each of these tasks,

participants were given a written task description similar in format

and style to those they were familiar with from their course

textbook (see Appendix A). The tasks were designed to be similar

in difficulty, with the same number of required conditionals in

each task and a similar number and overall complexity of

formulas. We pilot-tested the tasks prior to the study and were

confident that they were of relatively equal difficulty (see Section

3.3). The first task (Mortgage Task) was to create a spreadsheet

that, given various input parameters, would compute a mortgage

interest rate, closing costs, and estimated payment. The second

task (Payroll Task) was to create a simple payroll spreadsheet

that, given a pay rate, hours worked and number of allowances,

would compute income tax, social security tax, Medicare tax and

net pay. We refer to this variable as the Task variable.

3.2.2 Dependent Variables
In order to compare the performance of the students who fell into

the various groups created by the independent variables, we

identified a set of dependent variables and metrics to be collected

during the study. We were interested in making two types of

comparisons among the students.

First, we wanted to compare the Correctness of the spreadsheets

they created. To calculate correctness, we generated a list of eight

requirements for each task based directly on the task descriptions

given to the subjects (see Appendix A). For example, the

Mortgage task requirements included that the Loan Amount

equaled the Purchase Price minus the down payment and that the

Interest Rate decreased by 0.5% for each Point. Then each

spreadsheet was examined and every formula (or significant

portion thereof) was matched up with a requirement that it

appeared to attempt to meet. For requirements that had no

matching formula, a score of 0 was given. For requirements that

had a matching formula, but where the formula was faulty, a score

of 1 was given. Requirements that had a correct matching

formula received a score of 2. The correctness score was the sum

of the scores for each requirement, leading to an overall score

between 0 and 16 for each spreadsheet.

The second variable was the amount of Time taken to complete

the task. This variable allowed us to understand whether the

WYSIWYT method required more effort from the subjects than

their use of no methodology.

3.3 Pilot Studies
Prior to conducting this study we piloted WYSIWYT in two

different settings. We were most interested in verifying two

properties. First, we wanted to ensure that the subjects would be

able to understand and implement the two spreadsheet tasks and

that the tasks were of similar difficulty. Second, because this was

the first study that used the WAFFELL prototype, we wanted to

verify both that it was usable and that its use did not cause any

instability in Excel (i.e. Excel did not crash).

After some initial testing of WAFFELL by some computer science

graduate students, our first pilot study was conducted using

business technology students at Mississippi State University who

were enrolled in a course on spreadsheets. This pilot study gave

us a chance to determine whether the task descriptions would be

understandable to wider group of subjects and to test WAFFELL in

a more realistic environment. The results of this pilot study

showed that the tasks were too complex. Based on this result, we

simplified the tasks, primarily by removing some conditionals in

the functions. The results also showed that some users had trouble

with WAFFELL, especially in terms of the Excel software crashing.

We documented these cases and determined the causes so that

WAFFELL could be improved.

After some modifications and improvements to WAFFELL and the

tasks, we conducted a second pilot study. In this pilot study,

graduate students and office staff from the Computer Science and

Engineering Department at the University of Nebraska

participated. The goal of this pilot study was to have skilled

computer users perform the study tasks just as the regular subjects

would. In this pilot study, the feedback from the subjects

indicated that the tasks were understandable and comparable in

difficulty. Furthermore, none of the subjects experienced any

problems with understanding how to use the improved version of

WAFFELL or with its stability (i.e. Excel did not crash).

Based on these results, we were confident enough in the

procedure and WAFFELL to proceed with the full scale study

described in this paper.

3.4 Study Procedure
In designing this study we considered two approaches, a between

subjects design and a within subjects design. In all of our previous

WYSIWYT work we have used the between subjects design. This

design allows researchers to easily compare the performance of

subjects from two (or more) groups, using different treatments. In

addition, this design simplifies the execution of the study because

each study session can be shorter (i.e. subjects only have to

perform one treatment). On the other hand, this design has several

drawbacks, especially in a classroom setting. First, it requires a

large number of subjects to adequately populate all of the

treatments. Second, this design requires the partitioning of the

class into multiple groups and training these groups separately,

which may result in effects due to training differences. Third, it is

difficult to ensure that the subjects who are placed into each group

will have similar abilities, leading to a potential threat to validity.

Finally, from an educational point of view, it is not fair to teach

only half of the students the new technique.

Similar to the between subjects design, the within subjects design

also has benefits and drawbacks. The main drawback is that

because the subjects perform two treatments in succession, there

is a possibility that the subjects’ experience in the first treatment

will affect their performance on later treatments. This problem is

especially true in cases where a structured methodology is being

compared to an ad hoc methodology. Because it is not possible for

subjects to “unlearn” the structured methodology and return to an

ad hoc methodology, the experimental treatment must always be

done second. There are, however, several, benefits to this within

subjects approach. First, because each subject performs both (or

all) of the treatments, he or she can act as his or her own control

(combating one of the problems with a between subjects design).

Second, by allowing all subjects to receive equivalent training, we

can control for training differences. Third, this design requires

fewer subjects than the between subjects design, which is helpful

for a classroom environment. Finally, because all subjects are

trained in the new approach, a within subjects design fits well

with the educational goals of the course instructors.

Given this assessment of tradeoffs, together with the availability

of subjects and the goals of the course instructors, we selected the

within subjects design for the study.

The study was performed during a regularly scheduled class

meeting for each course, by the authors, and with minimal

interaction with the course instructors. The students in the class

were given full credit for the lab that day for participating in the

study. As the participants arrived for the study, they were given a

background questionnaire to complete.

After the questionnaires were completed and collected, the

participants were led through the process of installing WAFFELL on

the computer at their desk. Once WAFFELL was installed, each

student was given one of the two task descriptions (Payroll or

Mortgage) and asked to create the spreadsheet without using

WYSIWYT. Before starting the task the subjects were told that

“the created spreadsheet will be evaluated based on the

correctness of the formulas; formatting and the specific values do

not matter.” In order to control for effects related to task order,

half the students were assigned the Payroll task first while the

other half were assigned the Mortgage task first. The students

were given up to 20 minutes to complete the task. After

completing the task, they were given a short questionnaire.

The next step was to give the students a short tutorial on

WYSIWYT. This tutorial walked the students through the task of

testing the Grades spreadsheet shown in Figure 1. During the

tutorial we demonstrated the features of WYSIWYT. Specifically,

we walked through an example in which three checkmarks and

two x-marks were placed on the spreadsheet. Using the

information displayed in response to these markings, we located

an error in the formula used to compute the average, which we

then corrected.

After the tutorial, each subject received the task description they

had not yet seen. They were again given up to 20 minutes to

create spreadsheets, this time with the WYSIWYT features

enabled, and were again told that the spreadsheets would be

evaluated based on the correctness of the formulas only. At the

conclusion of this exercise, the students were given another

questionnaire.

4. DATA ANALYSIS
In this section, we organize our results around the three

hypotheses posed in Section 3. For each hypothesis we present a

statistical analysis of the data collected during the study and draw

conclusions based on those results. Before presenting the analysis,

we make a few comments about the data in general.

First, despite our efforts after the pilots, WAFFELL is still not

completely stable. There are two primary issues that affected the

stability of the WAFFELL prototype. First, Excel has a wide range

of features and provides limited programmability. These issues led

to unexpected interactions that caused Excel or our prototype to

crash in some instances. In addition, there appear to be bugs in

Excel that caused it to crash when performing some standard

operations on some system configurations with our plug-in

loaded. These bugs caused differences in behavior even on

machines that were supposedly configured with identical

hardware and software. During our study, several of our subjects

were affected by these problems, resulting in unusable data.

Having those subjects start over would not have provided accurate

data because 1) they would have knowledge of how to solve the

problem when they started the second time and 2) they would not

have the full 20 minutes to complete the exercise if needed.

Furthermore, because the timing continued until the subject

clicked on the end task button, some students appear to have

worked longer than 20 minutes. We have also excluded the data

for subjects who took longer than the 20 minutes allotted.

With these two stipulations, out of the 38 subjects who

participated, only 13 were able to complete both tasks without

Excel crashing and in the allotted time. An additional 12

completed only the non-WYSIWYT task in the allotted time and

an additional 8 completed only the WYSIWYT task in the allotted

time. Therefore, in the analysis of results we provide two

analyses, first using only the 13 subjects who completed both

tasks and second comparing the 25 who completed the non-

WYSIWYT task to the 21 who completed the WYSIWYT task.

We partition the data analysis into two sections. In Section 4.1 we

report on the statistical analysis comparing the spreadsheets

created using WYSIWYT to those created without WYSIWYT.

Then, in Section 4.2 we present the analysis of the post study

survey where the students were asked to rate the usefulness of the

different “tools” included in the WYSIWYT plug-in.

4.1 WYSIWYT vs. non-WYSIWYT Analysis
To properly analyze the influence of the two independent

variables (Treatment and Task), we chose the 2-way ANOVA

test. We also investigated each of the two dependent variables

(Correctness and Time). For each of these combinations, we

report the analysis when conducted using only the 13 subjects

who completed both tasks and for all subjects who completed at

least one task.

4.1.1 Correctness Analysis
The first set of ANOVA tests deals with the Correctness variable.

We ran two 2-way ANOVAs to compare the two independent

variables. The first ANOVA test was run using only the 13

subjects who completed both tasks. The results of this analysis

showed there was a non-significant 2-way interaction (p = .114).

Furthermore, neither variable showed a significant main effect

(Treatment: p = .699; Artifact: p = .773).

When the same analysis was done with all subjects who

completed either of the tasks, the results were similar. Again, the

2-way interaction was not significant (p = .288). Similarly, neither

variable showed a significant main effect (Treatment: p = .576;

Artifact: p = .367).

These two results indicate that overall there was no significant

difference between the subjects who used WYSIWYT and those

who did not use WYSIWYT in terms of the correctness of their

spreadsheets. These results are shown graphically in Figure 2.

4.1.2 Time Analysis
We performed a similar analysis for the Time variable. In this

case, for the 13 subjects who completed both tasks, the 2-way

interaction was not significant (p = .799), neither was the main

(a) All subjects (b) Subjects who completed

both tasks

Figure 2 – Correctness scores

(a) All subjects (b) Subjects who completed both

tasks

Figure 3 – Time

effect of the Treatment (p = .066). When using all subjects, the

2-way interaction was not significant (p = .482), but the main

effect of the Treatment was significant (p < .001) as well as the

main effect for Artifact (p = .047). Figure 3 shows the box plots

for both sets of subjects. After examining these box plots, we ran

a t-test to compare the time for the 13 subjects who completed

both tasks and the results did show a significant difference (p =

.055). Examining this figure, we can see that the subjects who

used WYSIWYT took significantly less time to complete the task

than those not using WYSIWYT.

4.2 Ratings of WYSIWYT tools
After completing both tasks, the students were given a survey to

help us understand how useful the six features of WYSIWYT that

they might have utilized were. Because all subjects completed the

post-study survey regardless of whether Excel crashed or not

during their tasks, the responses from all subjects who returned

the survey (35/38) are included in this analysis. The six features

we asked about were:

1. Checkmarks

2. X-marks

3. Cell border

4. Cell interiors

5. Overview bar (amount of testedness)

6. Tool tips

The subjects were asked to rate these features “Very Unhelpful”,

“Unhelpful”, “Neither”, “Helpful”, or “Very Helpful”.

The first feature we examine is the checkmarks. This feature

allows the subject to indicate whether a value in a cell was correct

and allows WYSIWYT to update the testedness of the cells in the

spreadsheet. Figure 4 shows that most common response was that

the checkmarks were “Helpful” and overall there were many more

positive (“Very Helpful” and “Helpful”) than negative (“Very

Unhelpful” and “Unhelpful”) responses.

The next feature we examine is the x-marks. Similar to the

checkmarks, the x-marks allow the subject to indicate whether a

value in a cell is incorrect, and lets WYSIWYT help them

determine where to look to correct the problem. In this case,

Figure 5 shows that the largest number of students did not view

the checkmarks as being positive or negative (response of

“Neither”), but was closely followed by those who said it was

“Helpful”. Again, overall there were many more positive

responses than negative responses.

The next feature we consider is the cell borders. These group

together cells with similar formulas, and indicate how tested each

group is, indicating the portions of the spreadsheet that should be

looked at by the user. The results shown in Figure 6 are similar to

those for the x-marks (i.e. the largest number of students

responded “Neither” followed closely by those that responded

Figure 4 – Helpfulness of the Checkmarks

Figure 5 – Helpfulness of the X-Marks

Figure 6 – Helpfulness of Cell Borders

Figure 7 – Helpfulness of Cell Interiors

“Helpful”). The fact that there were more positive responses than

negative again indicates that this feature was viewed as useful.

The next feature we consider is the cell interiors. The cell interior

colors show up after the user places an x-mark, and indicate cells

that contribute to the production of values marked as incorrect by

the user. These colors also prioritize the cells, through degree of

shading, in terms of the number of correct and incorrect values to

which they contribute. The results shown in Figure 7 are not as

strong as for the previous features. The largest number of

response here was “Neither” and there are still more positive

response than negative responses, but the difference is not as large

as it is for the previous features.

The next feature we consider is the overview bar. The overview

bar shows how tested the entire spreadsheet is, letting the user

know when more testing is required. The results shown in Figure

8 are similar to those for the cell interiors (i.e. most students had

no preference and there were a few more positives than

negatives).

The last feature we consider is the tool tips. Our system relies on

tool tips on our user interface devices to inform the user of the

meaning of the various user interface devices and to suggest

actions that the user could take to help with testing and debugging

the spreadsheet. The results shown in Figure 9 are most similar to

those for the checkmarks. The majority of the students had a

positive response to the tool tips.

5. THREATS TO VALIDITY
As in all studies, there are various threats that could affect the

validity of our results. These threats can be broken down into the

following categories: internal, external, construct, and conclusion.

The largest threats to this experiment are internal. We used a

within subjects design, requiring each subject to create two

spreadsheets, one without the treatment and one with. One

drawback of this design is that it does not allow us to address

maturation effects that could influence our results. These effects

could be either learning effects (after creating the first

spreadsheet, it might have been easier to create the second) or

motivation effects (after completing the first task, the subjects

could have been tired or bored). On the other hand, unlike in

previous studies of WYSIWYT that use a between subjects

design, this within subjects design allowed us to use each subject

as his or her own control, preventing innate differences between

the treatment groups from affecting the results.

One of the primary goals of this experiment was to reduce the

threats to external validity. Toward that end, we used a more

representative spreadsheet environment (Excel vs. Forms/3) than

has been used in prior experiments, and had the participants create

their own spreadsheets rather than evaluate spreadsheets provided

by the researchers. The tasks given to the participants were

selected to resemble tasks that might be seen in real world

applications, but were simplified to fit within the allotted time.

The time constraints and the classroom setting must be considered

as threats to the external validity.

Threats to construct validity include the possibility that the two

different tasks were not similar enough in difficulty for direct

comparison and that the subjects knew what the treatment was and

could easily guess our hypothesis. To mitigate the first, we used

pilot studies to assess the comparability of the tasks. In addition,

we found no significant difference in correctness between the two

tasks.

Threats to conclusion validity include several factors. The

correctness measure was based on a human evaluation of the

spreadsheets. To improve the reliability of this measure, we used a

list of requirements for the spreadsheets, and attempted to map

spreadsheet formulas back to requirements for comparison.

Another threat was posed by the stability (or lack thereof) of the

WAFFELL prototype as different subjects could have been exposed

to slightly different environments. To mitigate the effects of this,

in our analysis we considered those subjects who experienced no

known problems with the prototypes separately from those who

had problems. Finally, we have no way to judge whether mortality

(losing subjects because of a program crash) affected our

conclusions.

6. DISCUSSION
Based on the results discussed in Section 4, we now revisit our

original hypotheses and draw some conclusions. The first

hypothesis was:

H1: The use of WYSIWYT will improve the correctness

of end users’ spreadsheets

Based on the data discussed in Section 4.1.1 it does not appear

that in this study the use of WYSIWYT had an affect on the

Figure 8 – Helpfulness of Overview Bar

Figure 9 – Helpfulness of Tool Tips

correctness of the spreadsheets produced. Although the results did

differ between the two artifacts, there is not a consistent trend that

will allow us to draw any other conclusion than to reject this

hypothesis. It is important to note that the negation of the

hypothesis is also not true. From our results the correctness scores

are not significantly different regardless of which approach is

used.

The second hypothesis was:

H2: End users will be able to create spreadsheets more

quickly when using WYSIWYT

Examining the data from Section 4.1.2, we are able to conclude

that when using WYSIWYT the subjects completed their tasks in

significantly less time than when not using WYSIWYT. This

result suggests that the facilities provided by WYSIWYT allowed

the students to reach a conclusion that they had performed enough

validation activity on their spreadsheet more quickly than they

otherwise would have.

Finally, our third hypothesis was:

H3: End users will be able to understand and use the

WYSIWYT methodology

Section 4.2 showed the subjective opinion of the subjects on the

usefulness of the features of the WYSIWYT methodology. The

features were seen as helpful overall, with the tool tips receiving

the most positive response. In fact, all features received more

positive ratings than negative ratings. These results suggest that

the students found WYSIWYT to be helpful.

7. CONCLUSIONS & LESSONS LEARNED
Based on the analysis of the results in Section 4, and the

discussion of the hypotheses in Section 6, we can now draw some

conclusions.

The overall results of this study indicate that use of WYSIWYT

did not improve the correctness of spreadsheets, but it did

significantly reduce the amount of time required to create a

spreadsheet. Note, however, that the resulting spreadsheets were

also not significantly less correct than the spreadsheets created

without WYSIWYT. Taken together these results suggest that the

use of WYSIWYT might allow end users to create spreadsheets to

a certain level of dependability using less effort than might be

required without WYSIWYT. In this respect, our results are

consistent with the results of the earlier study [24], described in

Section 2.2, in which computer science students working within

Forms/3 were more efficient in terms of testing activity when

working with WYSIWYT.

This study was unique in that it represents the first attempt to

evaluate the WYSIWYT methodology in the context of a

commercial spreadsheet environment (Excel), using end-user

participants assigned a spreadsheet creation task. The use of these

two innovations in study setting have raised several issues

regarding the conduct of future studies, that need to be addressed

in order to support future work in this area. In particular, the

stability of the WAFFELL prototype needs to be improved. In

addition, to help with robustness we disabled some of the features

in Excel. We did not believe these features would be needed

during the study, but one of the course instructors disagreed. In

future studies, this issue needs to be addressed in more detail.

Finally, we need to better understand Excel configuration problem

that led to some irreproducible erroneous behavior in WAFFELL.

Beyond the immediate WYSIWYT context, this study illustrates

several issues with respect to studies of end-user programmers

that need to be considered by researchers working in this area.

First, the ability to find subjects who have experience with this

type of spreadsheet creation task, via the course they were

enrolled in, is important. Second, when working in a classroom

environment, it is important to ensure that all subjects receive the

same training (i.e. having a control group is possible only if they

are trained in the new technology after performing the control task

associated with the study. Finally, we again highlight the

importance of conducting pilot studies. In our case, even after

conducting two pilot studies, we still encountered unexpected

problems during the execution of the study. In highlighting these

lessons learned, we hope that it may pave the way for further

empirical work in the area of “end-user software engineering”, an

area of research that clearly requires such work, and cannot afford

to be further neglected.

8. ACKNOWLEDGEMENTS
This work was supported in part by the EUSES Consortium via

NSF Grant ITR-0325273. We would like to thank the course

instructors, Teri Brandenberg, Matilda Miller and Ling Ling for

allowing us to conduct the study in their course. We would also

like to thank the students who participated in the study.

9. REFERENCES
[1] Abraham, R. and Erwig, M. "Header and Unit Inference for

Spreadsheets through Spatial Analyses". In Proceedings of

IEEE Symposium on Visual Languages and Human-Centric

Computing. Rome, Italy. Sep., 2004 p. 165-172

[2] Ahmad, Y., Antoniu, T., Goldwater, S., and Krishnamurthi, S.

"A Type System for Statically Detecting Spreadsheet Errors".

In Proceedings of International Conference on Automated

Software Engineering. Oct., 2003 p. 174-183

[3] Antoniu, T., Steckler, P., Krishnamurthi, S., Neuwirth, E., and

Felleisen, M. "Validating the Unit Correctness of

Spreadsheet Programs". In Proceedings of 26th International

Conference on Software Engineering. Edinburgh, Scotland,

UK. May, 2004 p. 439-448

[4] Ayalew, Y. and Mittermeir, R. "Interval-Based Testing for

Spreadsheets". In Proceedings of International Arab

Conference on Information Technology. University of Qatar,

Qatar. Dec., 2002 p. 414-422

[5] Beckwith, L., Burnett, M., and Cook, C. "Reasoning About

Many-to-Many Requirement Relationships in Spreadsheets".

In Proceedings of IEEE Symposium on Human Centric

Computing Languages and Environments. Arlington, VA

USA. Sept., 2002 p. 149-157

[6] Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte,

S., and Hastings, M. "Effectiveness of End-User Debugging

Software Features: Are There Gender Issues?" In

Proceedings of ACM SIGCHI Conference on Human Factors

in Computing Systems. Portland, OR USA. Apr., 2005 p.

869-878

[7] Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein,

J., and Yang, S., Forms/3: A First-Order Visual Language to

Explore the Boundaries of the Spreadsheet Paradigm.

Journal of Functional Programming, 2001. 11(2): p. 155-

206.

[8] Burnett, M., Sheretov, A., Ren, B., and Rothermel, G., Testing

Homogeneous Spreadsheet Grids with the ``What You See Is

What You Test'' Methodology. IEEE Transactions on

Software Engineering, 2002: p. 576-594.

[9] Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J.,

and Wallace, C. "End-User Software Engineering with

Assertions in the Spreadsheet Paradigm". In Proceedings of

25th International Conference on Software Engineering.

Portland, OR USA: IEEE-CS. May, 2003 p. 93-103

[10] Clermont, M. "Analyzing Large Spreadsheet Programs". In

Proceedings of 10th Working Conference on Reverse

Engineering. Victoria, BC, Canada. Nov., 2003 p. 306-315

[11] Clermont, M. and Mittermeir, R. "Auditing Large

Spreadsheet Programs". In Proceedings of International

Conference on Information Systems Implementation and

Modelling. Apr., 2003 p. 87-97

[12] Cullen, D., Excel Snafu Costs Firm $24 Million, in The

Register. 2003.

[13] Erwig, M., Abraham, R., Cooperstein, I., and

Kollmansberger, S. "Automatic Generation and Maintenance

of Correct Spreadsheets". In Proceedings of 27th

International Conference on Software Engineering. St.

Louis, MO USA. May, 2005 p. 136-145

[14] Fisher II, M., Cao, M., Rothermel, G., Cook, C., and Burnett,

M. "Automated Test Case Generation for Spreadsheets". In

Proceedings of 24th International Conference on Software

Engineering. May, 2002 p. 241-251

[15] Fisher II, M., Jin, D., Rothermel, G., and Burnett, M. "Test

Reuse in the Spreadsheet Paradigm ". In Proceedings of

International Symposium on Software Reliability

Engineering. 2002 p. 257-268

[16] Fisher II, M., Rothermel, G., Creelan, T., and Burnett, M.

Scaling a Dataflow Testing Methodology to the

Multiparadigm World of Commercial Spreadsheets. TR-

UNL-CSE-2005-0003. University of Nebraska -- Lincoln:

Lincoln, NE USA.2005.

[17] Ko, A.J. and Myers, B.A. "Designing the Whyline: A

Debugging Interface for Asking Questions About Program

Failures ". In Proceedings of ACM SIGCHI Conference on

Human Factors in Computing Systems. Vienna, Austria.

Apr., 2004 p. 151-158

[18] Krishna, V., Cook, C., Keller, D., Cantrell, J., Wallace, C.,

Burnett, M., and Rothermel, G. "Incorporating Incremental

Validation and Impact Analysis into Spreadsheet

Maintenance: An Empirical Study". In Proceedings of

International Conference on Software Maintenance.

Florence, Italy: IEEE-CS. Nov., 2001 p. 72-81

[19] Panko, R. and Halverson, R. "Spreadsheets on Trial: A

Survey of Research on Spreadsheet Risks". In Proceedings of

Hawaii International Conference on System Sciences. Jan.,

1996 p. 326-335

[20] Panko, R., What We Know About Spreadsheet Errors.

Journal of End User Computing, 1998: p. 15-21.

[21] Reichwein, J., Rothermel, G., and Burnett, M. "Slicing

Spreadsheets: An Integrated Methodology for Spreadsheet

Testing and Debugging". In Proceedings of 2nd Conference

on Domain Specific Languages. Austin, TX USA. Oct., 1999

p. 25-38

[22] Rothermel, G., Li, L., and Burnett, M. "Testing Strategies for

Form-Based Visual Programs". In Proceedings of 8th

International Symposium on Software Reliability

Engineering. Albuquerque, NM USA: IEEE-CS. Nov., 1997

p. 96-107

[23] Rothermel, G., Burnett, M., Li, L., DuPuis, C., and Sheretov,

A., A Methodology for Testing Spreadsheets. ACM

Transactions on Software Engineering and Methodology,

2001: p. 110-147.

[24] Rothermel, K., Cook, C., Burnett, M., Schonfeld, J., Green,

T., and Rothermel, G. "Wysiwyt Testing in the Spreadsheet

Paradigm: An Empirical Evaluation ". In Proceedings of

22nd International Conference on Software Engineering.

Limerick, Ireland: ACM. June, 2000 p. 230-239

[25] Ruthruff, J., Creswick, E., Burnett, M., Cook, C.,

Prabhakararao, S., Fisher II, M., and Main, M. "End-User

Software Visualizations for Fault Localization". In

Proceedings of ACM Symposium on Software Visualization.

San Diego, CA USA: ACM. June, 2003 p. 123-132

[26] Ruthruff, J., Burnett, M., and Rothermel, G. "An Empirical

Study of Fault Localization for End-User Programmers". In

Proceedings of 27th International Conference on Software

Engineering. St. Louis, MO USA. May, 2005 p. 352-361

[27] Sajaniemi, J., Modeling Spreadsheet Audit: A Rigorous

Approach to Automatic Visualization. Journal of Visual

Languages and Computing, 2000. 11(1): p. 49-82.

[28] Scott, A., Shurgard Stock Dives after Auditor Quits over

Company's Accounting, in The Seattle Times. 2003.

[29] Wiedenbeck, S., Zila, P.L., and McConnell, D.S. "End-User

Training: An Empirical Study Comparing on-Line Practice

Methods". In Proceedings of ACM SIGCHI Conference on

Human Factors in Computing Systems. Denver, CO USA.

May, 1995 p. 74-81

[30] Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn,

L., Cook, C., Durham, M., and Rothermel, G. "Harnessing

Curiosity to Increase Correctness in End-User

Programming". In Proceedings of ACM SIGCHI Conference

on Human Factors in Computing Systems Ft. Lauderdale, FL

USA: ACM. Apr., 2003 p. 305-312

Appendix A: Task Descriptions
ABC Mortgage Calculator

You work for a small lender, ABC Mortgages, and you have been asked to build a simple mortgage closing cost, interest rate and payment

calculator. This spreadsheet will be used to calculate mortgages for a variety of customers. Therefore, you have not been provided with

specific values for your spreadsheet. Your spreadsheet should function correctly when any values are entered for Purchase Price, Down

Payment, Points, Mortgage Length, and Base Interest Rate.

The spreadsheet should be structured as follows (you can insert cells for intermediate calculations if needed):

Purchase Price $200,000

Down Payment $20,000

Loan Amount ---

Points 1

Mortgage Length (years) 30

Base Interest Rate 5%

Closing Costs ---

Interest Rate ---

Estimated Monthly Payment ---

Purchase Price and Down Payment can be any dollar amount.

Points can be a number between 0 and 2.

Base Interest Rate can be any percentage.

Interest Rate is computed as follows:

 For each Point there is 0.5% discount (Points Discount).

 If the Mortgage Length is 15 years, there is a 1% discount

(Mortgage Length Discount).

 If the Down Payment is 0, there is a 1% penalty, otherwise

if the Down Payment is less than 20% of the Purchase

Price, there is a 0.5% penalty (Down Payment Penalty).

 The Interest Rate is the Base Interest Rate plus the Down

Payment Penalty and minus the discounts.

Loan Amount is Purchase Price - Down Payment.

Mortgage Length can be 15 or 30 years.

Closing Costs is computed as follows:

 The Loan Origination Fee is Points/100 x Loan Amount.

 Closing Costs is $1300 + Loan Origination Fee.

Estimated Monthly Payment is computed as follows:

 Monthly Interest Rate is Interest Rate/12. Number of

Payments is Length x 12.

 Estimated Monthly Payment is PMT(Monthly Interest

Rate, Number of Payments, Loan Amount).

Diane’s Feed and Tack Payroll Task

Diane’s Feed and Tack has 5 employees who are paid on a weekly basis. Diane has hired you to create an Excel spreadsheet that she can

use each week to compute their gross and net pay. She wants to be able to use the same spreadsheet each week to do the payroll. Therefore,

she has not provided you with specific values for your spreadsheet. Your spreadsheet should function correctly when any values are

entered for Allowances, Hourly Pay, and Hours Worked.

The spreadsheet should be structured as follows (you can insert extra columns for intermediate calculations if needed):

Name SSN Allowances Hourly

Pay

Hours

Worked

Gross

Pay

Federal

Income Tax

Social Security

Tax

Medicare

Tax

Net

Pa

y

Emp 1 000-00-0000 0 $10.00 20 --- --- --- --- ---

Emp 2 000-00-0000 1 $10.00 50 --- --- --- --- ---

Gross Pay is computed as follows:

 Regular Pay is Hourly Pay x Hours Worked (For the

first 40 hours)

 Overtime Pay is 1.5 x Hourly Pay x Hours Worked (For

hours after the first 40)

 Gross Pay is Regular Pay + Overtime Pay

Social Security Tax is 5% of Gross Pay

Net Pay is Gross Pay minus the 3 tax amounts.

Federal Income Tax is computed as follows:

 Compute Adjusted Gross by subtracting $60 from the

Gross Pay for each Allowance

 Federal Tax Percent is:

 Federal Income Tax is Adjusted Gross x Federal Tax

Percent

.Medicare Tax is 2% of Gross Pay.

If Adjusted Gross is

over…

But is not

over…

Then Federal Tax

Percent is…

 $ 200 10%

$ 200 $ 500 20%

$ 500 30%

(a)

A

l

l

s

u

b

j

e

c

t

s

(

b

)

S

u

b

j

e

c

t

s

w

h

o

c

o

m

p

l

e

t

e

d

b

o

t

h

