
- Average defect detection rates
- Unit testing – 25%
- Function testing – 35%
- Integration testing – 45%

- Average effectiveness of design/code inspections – 55%
- JPL estimates that it saves about $25,000 per inspection by finding and fixing

defects at an early stage

All data from Code complete

1

Please check this small C++ function. There is a mistake in the code. Can anyone
please identify the mistake?

On line 13, assignment operator instead of comparison. This types are mistakes are
sometimes hard to identify.

2

3

4

In the first example, the author has used camelCases in identifier naming, where
other lines have used underscores. This is a style inconsistency issue identified by the
reviewer.

5

Author created a silly mistake of including a redundant check. Many times developers
commit this type silly mistakes. In this case, it was not a bug, but sometimes it can
cause defects.

6

Buffer Overflow

7

In this example, the author has used a unsafe html handling method. This has the
potential to open cross site scripting attack. The reviewer identifies that and the
author fixes it.

8

We all make mistakes. Even quite experienced programmers still make mistakes.
Sometimes we are unable to identify the mistake even it is right in front of our eyes.
Therefore, we require some quality assurance checks to eliminate defects.

9

For example, book publishers face similar problem in correcting text. For years, they
have employed proofreaders, who can examine the text with a fresh pair of eyes. You
may also have the experience of someone else read your writing and returning you
something like this.

Software development has a similar practice as proofreading, which we call peer
code review. Peer code review is the process of analyzing code written by a
teammate to judge whether it is of sufficient quality to be integrated into the main
project codebase. Today, I will talk about contemporary peer code reviews.

10

If we are going to do code review, we have to sacrifice something?
What gets sacrificed?
Is the tradeoff worth it?

11

12

• Team building
• Better shared understanding
• Team cohesion
• Peer impression

• Code Quality
• Find/fix defects early
• Identify common problems
• Different perspectives
• Consistency in code/design
• More maintainable code

• Personal
• Learning

13

The goal is for peace and harmony in the team, not antagonism

14

- Code review can come to nothing or harm the interpersonal relationships when
they are done wrong.

- Hence it is important to pay attention to the human aspects of code review

15

• Realize that the goal of code review it to improve the overall code, not to evaluate
the quality or worth of the developer

• Remove the fear of making to mistakes an create an atmosphere where admitting
and fixing is OK

• You are not your code
• Be humble

• You will make mistakes, we all do
• Someone else will always know more, its ok, learn from them
• People bring different perspectives, that’s a good thing

• Fight for what you believe, but gracefully accept defeat

16

• Focus on the code not the author
• Use “I” statements rather than “you” statements
• Criticize the author’s behavior, not their attributes
• Talk about the code, not the coder

• Ask questions rather than make statements – avoid “why” questions
• Accept that there are different solutions
• Choose carefully which battles to fight
• Remember to praise good code
• Take your time and do it well

18

- We want to focus on what people are good at and let computers do what they are
good at

20

• Examine the code
• Is the code readable to a human?
• Are variables and method names clear?
• Is there sufficient documentation for someone to come back 6 months

later (or someone new) to understand what the code is doing?
• Examine the algorithms in detail

• Are there any hidden assumptions, not specified, that could cause
problems?

• Are there edge cases that may not work?
• What happens with bad or missing data?
• Does the algorithm do what it is supposed to? – Use stepwise abstraction

21

22

23

24

25

- Mention blog post here, the idea is that the question should suggest a solution,
but still be a question.

26

27

28

29

30

31

- Practice lightweight code reviews.

- Review fewer than 400 lines of code at a time.

- Inspection rate should be under 500 LOC per hour.

- Do not review for more than 60 minutes at a time.

- Set goals and capture metrics.

- Authors should annotate source code before review.

- Use checklists.

32

- Establish a process for fixing defects found.

- Foster a positive code review culture.

- Embrace the subconscious implications of peer review.

32

Issues Identified during code reviews
- Misunderstood requirements
- Project design violations
- Coding style
- Critical security defects
- Unsafe methods
- Inefficient code
- Malicious code
- Inadequate input validation
- Lack of exception handling

33

- Cultural difference between scientific community and software engineering
community

- Correct results are unknown in many cases
- Testing is extensively complex in scientific software
- Common testing approaches may not fit
- May be better to review the scientific algorithm than to extensively test code
- Lack of proper testing knowledge
- Test to check the science, not the software
- Tend to test when development is about to finish

34

35

Let’s look into a typical code review workflow. Code review process starts after an
author writes a code and submits the code for review by creating a review request.
A reviewer accepts the review request. He reviews the code and provides feedback.
The author modifies the code to address the review comments and submits the code
again for review. This process of author modifying code and reviewer providing
suggestions repeats until the reviewer approves the code or the author abandons the
change. If the code is approved the author can integrate the code into main project
code base.

36

37

- Generate diff file
- Email to list with pre-determined keywords
- Hope someone responds

- Problems
- Lack of code context
- Code integration
- Review request management
- Ignored requests
- Reviewing large patches

38

39

41

• Informal
• Asynchronous
• Tool-based
• High adoption
• ~6 hours/week

42

43

Contemporary code reviews are tool-based. Popular code review tools include: Gerrit,
ReviewBoard, Phabricator, and Crucible.

44

45

- Average defect detection rates
- Unit testing – 25%
- Function testing – 35%
- Integration testing – 45%

- Average effectiveness of design/code inspections – 55%
- JPL estimates that it saves about $25,000 per inspection by finding and fixing

defects at an early stage

All data from Code complete

46

47

