Jetfrey C. Carver
University of Alabama

Contemporary Peer Code
Review Practices in VS
Research Software = ||jgpiEhats

- Average defect detection rates
- Unit testing — 25%
- Function testing —35%
- Integration testing — 45%

- Average effectiveness of design/code inspections — 55%
- JPL estimates that it saves about $25,000 per inspection by finding and fixing

defects at an early stage

All data from Code complete

// file: IVR.CPP

void IVR()

{
//press 1 for account balance, 2 for last transaction,
//3 for last statement, any other for operator
play_prompt () ;

int key pressed= get user_ choice();

OdoUeWNMH

if (key pressed ==1)
{

= o
o

play account balance();

[
[

}

else if (key pressed =2) ==

{

Tl
U WwN

play last transaction();

[
o

}
else if (key pressed ==3)
{

s
[P

play last statement();

N
o

}

else transfer to_operator();

NN
N B

Please check this small C++ function. There is a mistake in the code. Can anyone
please identify the mistake?

On line 13, assignment operator instead of comparison. This types are mistakes are
sometimes hard to identify.

if (user.isAuthenticated)

userAccess = checkUserAuthorization (user);
//if user has access to printer
printUsageReport ();
else \\\\\
emailUsageReport () ; _

1
2
3
4
5
6
7
8
9

e
H o
aE

Do you think only novice developers

make these mistakes?

: CDMR SUBSCRIPTICN SOURCE NV 0
g#¢define CDMA SUBSCRIPTION_SOURCE RUIM 1
S Sep 13,2010

the functions below operate on an AModem object. so should be named amodem switch _technology()
amodem_set_cdma_xx

- ——— Sep 23,2010

Reply ...| Reply ::"e‘

3tatic cons3t char* switchlechnology(AModem modem, .'—_\’.'::ie:rfe:n newtech, int3Z t newpreferred) |

static int set_cdma subscription source(AMcdem modem, ACdmaSubscriptionSource ss);
static int set_cdma prl version(AModem modem, int prlVersion):

In the first example, the author has used camelCases in identifier naming, where
other lines have used underscores. This is a style inconsistency issue identified by the
reviewer.

{noMedia)
/- 1In

i<

/ .nome ; no e T
// be removed from files table in the post sca
1I (entry '= null && noMedia) |{
Jan 15, 2012
Isn't '&& noMedia' redundant? noMedia can only be true inside the if block.
Reply Reply Done
e Jan 16, 2012
Thanks [JJl] My bad D
Reply ‘ Reply 'Done’|

entry.mSeenInFileSystem = false;

return null;

1
J

Author created a silly mistake of including a redundant check. Many times developers
commit this type silly mistakes. In this case, it was not a bug, but sometimes it can
cause defects.

if ((nbytes=recvfrom(fd,msgbuf, MSGBUFSIZE, O,
#13344 > » (struct sockaddr *) &addr, &
» perror ("recvirom") ;
» exit(1l);
» }
» puts (msgbuf) ;

EE— Feb 8, 2010
|I§n'1 there a risk of msgbuf not being tgrmingtgdjj Reading all the way to

MSGBUFSIZE seems to risk overwriting the implicit init done, or does
the kernel always null-terminate the buffer, even if it is larger than
MSGBUFSIZE?

| guess the worst case scenario is puts going off on a tangent, so
probably not particularly dangerous, but still”

Feb 9, 2010

IIou are absolutely right] | will change it to write() the number of bytes
received. [only tested it with the other file (sender.c) which sends
"Hello, world" with the null-byte attached. | will send a patch when | get
home. Thanks for the review!

Buffer Overflow

54 if ($this->isPermalink

55 $html .= Linker::1link(

56 SpecialPage::getTitleFor('ArticleFeedbackvS', $record[@]->(
age_title

57) luf'-'es:-age ‘articlefeedbackv5-special-goback')->text l

E— Apr 17,2012

(). because the second

— Apr 17,2012

In this example, the author has used a unsafe html handling method. This has the
potential to open cross site scripting attack. The reviewer identifies that and the
author fixes it.

https://twitter.com/noeabarcam/
status/394749401283190784

We all make mistakes. Even quite experienced programmers still make mistakes.
Sometimes we are unable to identify the mistake even it is right in front of our eyes.
Therefore, we require some quality assurance checks to eliminate defects.

You might be an Internet “soloprencur’, a lone wolf who writes, edits, formats, checks and
publishes your pwn content, Or you might work for a Lemg;\w.bsilc cither as a content
creator or as a#nduuuméﬂlmr sub-editor or gditor - the person in charge of quality control and
tasked to edit/proofread \\rrt [amdun.ul by your colleagues,

V4
i Not you? Maybe you want to sclf-publish a book on Amazoy, gheck through a student cssay
/ or thests, perhaps error-check a company report? Maybe you'relindrolved in creating a brochure,

newslPefs, business cards, product packaging or signs? Not you either? What about sending an

email, posting a Tweet or updating r'\ctbook" st Is everything you've
typed recently correct? Are you certain?

You might not have a proofreading process. e already be actively
proofreading and want to get better at it. F ik

And forgotten 1T you publish or print words of any kind, you won't \\fzzémy mistakes to slip through. You' ; /
want to ensure that what you produce is the best that it can fbe. This is especially true if yoy are

nting .m)lhm& Mistakes on the web can be LOI’I’LLK You don’t have that Juxury with print.
el i#you’d been the sign writer who painted

'SHCOOL™ inBig : road when \,ou meant to spell *SCHOOL’, Or that you'd
given the OK to a sign th IVE-THRU ENTERANCE". These are real examples.

m _’/‘:/'@J_Lﬁ: T proofreading howlers like these later in this book.

Aszaig, proofrcading js anesscntial part of the publishing process. The larger the font, the
more you shoyld check he more permanent the publication or installation, the more you
should check/ithYou should check and re-check everything you plan to publish until your eyes
ache or until the Words start to look incorrect and you have to look them up again just to make
sure that you're rot going crazy. And il you have time for a re-re-check, so much the better.

For example, book publishers face similar problem in correcting text. For years, they
have employed proofreaders, who can examine the text with a fresh pair of eyes. You
may also have the experience of someone else read your writing and returning you
something like this.

Software development has a similar practice as proofreading, which we call peer
code review. Peer code review is the process of analyzing code written by a
teammate to judge whether it is of sufficient quality to be integrated into the main
project codebase. Today, | will talk about contemporary peer code reviews.

10

If we are going to do code review, we have to sacrifice something?
What gets sacrificed?
Is the tradeoff worth it?

11

Code Review (:}oz.lls_

12

* Team building
* Better shared understanding
* Team cohesion
* Peer impression

* Code Quality
* Find/fix defects early
* |dentify common problems
* Different perspectives
* Consistency in code/design
* More maintainable code

* Personal
* Learning

The goal is for peace and harmony in the team, not antagonism

14

Code Review Practices

Code review can come to nothing or harm the interpersonal relationships when
they are done wrong.
Hence it is important to pay attention to the human aspects of code review

15

What do I
need to do?

* Realize that the goal of code review it to improve the overall code, not to evaluate
the quality or worth of the developer
* Remove the fear of making to mistakes an create an atmosphere where admitting
and fixing is OK
* You are not your code
* Be humble
* You will make mistakes, we all do
* Someone else will always know more, its ok, learn from them
* People bring different perspectives, that’s a good thing
* Fight for what you believe, but gracefully accept defeat

16

——

What am I
supposed to do?

Focus on the code not the author

IIIII

* Use “I” statements rather than “you” statements
* Criticize the author’s behavior, not their attributes
* Talk about the code, not the coder
Ask questions rather than make statements — avoid “why” questions
Accept that there are different solutions
Choose carefully which battles to fight
Remember to praise good code
Take your time and do it well

18

Code Review Techniques

- We want to focus on what people are good at and let computers do what they are
good at

20

et 3 il Bil A

v
Eaport Peckcaet s mp) the |

‘ o
Pius it Eistag Seftware (Audacty)

* Examine the code
* Is the code readable to a human?
* Are variables and method names clear?
* Is there sufficient documentation for someone to come back 6 months
later (or someone new) to understand what the code is doing?
* Examine the algorithms in detail
* Are there any hidden assumptions, not specified, that could cause
problems?
* Are there edge cases that may not work?
* What happens with bad or missing data?
* Does the algorithm do what it is supposed to? — Use stepwise abstraction

21

Example - Stepwise Abstraction

* Examine the algorithm embedded in the code
*Start at the bottom, extract low-level functionality
* Group low-level functionality into higher-level

* At top level, compare with desired plan

22

)
(c>d)
b) || (b>c) |]

i ((a>

while

L if (b>a)
(.

i

b

a

if(c>b)

b;
a;
i;

c;
b;
i;

23

Code Review Comment

Exercise

24

“You are writing cryptic code”

“Its hard for me to grasp what is

going on in the code”

Use I-Messages

25

“This is not how I would have solved
the problem”

“Why did you use this approach rather
than approach X?”

Ask questions where possible

- Mention blog post here, the idea is that the question should suggest a solution,
but still be a question.

26

“You are sloppy when it comes
to writing tests”

“I believe that you should pay more
attention to writing tests”

Criticize the author’s
behavior, not the author

27

“You’re requesting the serve
multiple times, which is inefficient”

“This code is requesting the service
multiple times, which is inefficient”

Talk about the code, not the coder

28

“I always use fixed timestamps in
tests and you should too”

“I would always use fixed timestamps in tests

for better reproducibility, but in this simple test,
using the current timestamp is also ok”

Accept different solutions

29

L
Developer

EhechklisG
[z/ My code compiles

[z/ My code has been tested and has unit tests
lz/ My code includes appropriate comments
[2/ My code is tidy / follows coding standard
[2/ I have documented corner cases

[E/ I have documented workarounds

g

30

Reviewer
ECheclihlis

[z/ Comments are understandable and appropriate
[z/ Comments are neither too many or too few

lz/ Exceptions are appropriately handled

[2/ Repetitive code has been factored out
[2/ Frameworks have been used appropriately
[E/ Functionality fits the design/architecture

‘z/ Code is testable
IE/ Code compiles

31

Code Review

Practice lightweight code reviews.

Review fewer than 400 lines of code at a time.

Inspection rate should be under 500 LOC per hour.

Do not review for more than 60 minutes at a time.

Set goals and capture metrics.

Authors should annotate source code before review.

Use checklists.

32

Establish a process for fixing defects found.

Foster a positive code review culture.

Embrace the subconscious implications of peer review.

32

e TR
L Vi gy
-

Issues Identified during code reviews
- Misunderstood requirements

- Project design violations

- Coding style

- Critical security defects

- Unsafe methods

- Inefficient code

- Malicious code

- Inadequate input validation

- Lack of exception handling

Research Code Review?

- Cultural difference between scientific community and software engineering
community

- Correct results are unknown in many cases

- Testing is extensively complex in scientific software

- Common testing approaches may not fit

- May be better to review the scientific algorithm than to extensively test code

- Lack of proper testing knowledge

- Test to check the science, not the software

- Tend to test when development is about to finish

34

Typical Code Review

Workflow

35

Requests
Review

S T

Let’s look into a typical code review workflow. Code review process starts after an
author writes a code and submits the code for review by creating a review request.
A reviewer accepts the review request. He reviews the code and provides feedback.
The author modifies the code to address the review comments and submits the code
again for review. This process of author modifying code and reviewer providing
suggestions repeats until the reviewer approves the code or the author abandons the
change. If the code is approved the author can integrate the code into main project
code base.

36

Mailing List Code Review

37

R e e
Subject [patch] Fix cross-user symlink race condition vulnerability
Date Wed, 31 Oct 2012 04:46:47 GMT

From

There is a race condition vulnerability in httpd 2.2.23 (also present in
previous releases) that allows a malicious user to serve arbitrary files
from nearly anywhere on a server that isn't protected by strict os level
permissions. In a shared hosting environment, this is a big vulnerability.

If you would like more information on the exploit itself, please let me
know. I have a proof of concept that is able to hit the exploit with
100% success.

This is my first patch submitted to Apache, so I'm sorry if I've missed
something. I'm aware that this doesn't meet some of the code standards
that are in place (e.g, it doesn't work at all on Windows), but I wanted
to put it out there anyway.

The patch that fixes the vulnerability is attached. Thank you in advance
for the feedback.

Mime +« Unnamed multipart/mixed (inline, None, 0 bytes)
o Unnamed text/plain (inline, 7-Bit, 857 bytes)
o httpd-2.2.23-symlink-protection.patch (text/x-patch) (attachment, 7-Bit, 8324 bytes)

iew raw message

«Date » + « Thread

Generate diff file
Email to list with pre-determined keywords
Hope someone responds

Problems

Lack of code context

Code integration

Review request management
Ignored requests

Reviewing large patches

38

Pull Requests

39

Tool-Based Code Reviews

41

D LibreOffice’

facebook

—

* Informal

* Asynchronous
* Tool-based

* High adoption
* ~6 hours/week

42

Code Review Tools

43

Code Review Tools
Gerrit: https://code.google.com/p/gerrit/

Review Board: https://www.reviewboard.org/

" Phabricator: https://phabricatot.org/

Crucible:
https:/ /www.atlassian.com/software/crucible

Contemporary code reviews are tool-based. Popular code review tools include: Gerrit,
ReviewBoard, Phabricator, and Crucible.

44

References for further reading

» Code Complete, by Steve McConnel

« https://www.codeproject.com/articles/524235/codeplus
reviewplusquidelines

hauer.de/code-review-quidelines

joho/awesome-code-review

* https://www.planetgeek.ch/wp-
content/uploads/2013/06/Clean-Code-V2.1.pdf

45

Jetfrey C. Carver
carver@cs.ua.edu 0

@SE4Science
L4 /.

Contemporary Peer Code
Review Practices in Y
Research Software S ||| scientific

- Average defect detection rates
- Unit testing — 25%
- Function testing —35%
- Integration testing — 45%

- Average effectiveness of design/code inspections — 55%
- JPL estimates that it saves about $25,000 per inspection by finding and fixing

defects at an early stage

All data from Code complete

46

’][

’ £ ado

’ Drote
ode.1pda

’ »
onte Dioad

’ A 0
3 4e4blce4al
’ esidentia
onte Dioad

) DAad
3-De DIFa e

) O 0
DA# Metadata

) enterta
DOO eviewe
PNOLO D

-8
emale-computer-proqra
ode-revie ode
e pload D14

)

[l (] 4 A.A

3798babe4b(

20

(]
eV.Vile
.

47

