Software Design

Jeffrey Carver Andrew Loftus
University of Alabama University of Illinois
carver@cs.ua.edu aloftus@illinos.edu




Overview

* (Brief) Introduction to Software Design - Jeff
* Think Like a Programmer — Andrew

* BREAK

* Introduction to Design Patterns - Jeff




(Brief) Introduction to

Software Design




Why is it necessary to have good software design?
Does software design have to be heavyweight?
Do you have to do it all up front?

One definition of design:

- Firmness — no bugs that inhibit function

- Commodity — Suitable for intended purpose

- Delight — Experience of using software should be pleasurable



Design Principles

* Traceability

* Minimize intellectual distance
* Don’t reinvent the wheel

* Accommodate change

* Degrade gracefully

- Traceability — maps back to analysis model
- Intellectual distance — between the software and the real world
- Degrade gracefully — Even when there is bad data or error conditions



Fundamental Concepts

* Abstraction
* Patterns

* Modularity
* Hiding

* Functional independence

- Functional Independence — single-minded functions

- Briefly discuss each of these and why they are important concepts



Think Like a Programmer

https://docs.google.com/presentation/d/1eNpMYEyS2x92P2194 kfHSS2KaRHxzRsRN85WFh0/edit




Introduction to Design Patterns




- Design Patterns are standard ways to solve common programming problems

- DP are not created — they emerge
- Each pattern describes a problem that occurs frequently, along with a standard

solution
- DP include context that explain when they work along with limitations and
constraints



Behavioral Patterns

10



Chain of Responsibility

* Problem: Need a common interface by which requests can be
sent without knowing which specific method will handle the
request or parts of the request.

* Solution: Decouple sender and receiver by providing multiple
methods to handle the request (or parts of the request)

* Example?

Problem

- Requesting objects do not always know who should handle the request (or each
part of the request)

- Request handlers may need to be changed dynamically

Solution
A “chain” of methods — each handles what it is supposed to and then passes the
remaining needs along the chain

Example
* In asituation where there are multiple machines that could potentially handle a

processing request, the client may not know which one is available. You don’t want
to make the client figure this out. So, you can give an interface that passes the
request to the most appropriate node.

11



Command

* Problem: Need to queue commands, need a history of
commands, need an “undo”

* Solution:
* Encapsulate commands as objects

* Client instantiates the command object with the appropriate
information (needed to be called later)

* Invoker decides when method is called

* Examples?

12



Creational Patterns

13



Builder

* Problem: Need to create various representations of the same

object

* Solution:

* Abstract construction steps
* Different implementations can occur for different objects

* Examples?

Example
- Need to build various types of automobiles. May have a builder class that includes

the body, engine, tires, electronics, etc... Then you would instantiate those differently
for different types of cars. But, the interface at the top is the same

14



Structural Patterns

15



Decorator

* Problem:
* Need to add new functionality to an object dynamically
* Want different instances of a class to behave differently

* Solution
* Enclose object inside of another object
* Attach new responsibilities at runtime
* Keep the same interface

* Examples?

Example: Adding functionality to a windowing system (e.g. scroll bars)

16



Adapter Pattern

* Problem:
* Two classes with incompatible interfaces need to work together

* An existing component may have needed functionality, but an
incompatible interface

* Solution
* Convert the interface into what is expected

* Examples?

Example: Real world example — your device uses a plug for a US based outlet. When
you travel to Europe, you need an adapter to make that interface still work (note that
you aren’t converting from 110 to 220) just adapting the interface.

17



Proxy

* Problem:
* Need to temporarily provide a placeholder or surrogate
* Something takes a long time to load — may not want to wait
* Something is expensive to create — delay creation until needed

* Solution
* Allow other objects to access through a placeholder
* Proxy takes care of creating object (when time is right)
* Proxy forwards requests to object

* Examples?

Example: Real-world example — large photo on a webpage. First a proxy is loaded
then, if needed, the full image is loaded.

18



Design Patterns

>

acn Dk MG
Design Patterns
Elements of Reusable
Object-Oriented Software
Erich Gamma
Richard Helm

Ralph Johnson
John Vlissides

S31YIS ONILNIWOD T¥NOISSIIO¥d ATISIM-NOSIAAY

19



More Python Examples

20



Software Design

Jeffrey Carver
University of Alabama
carver@cs.ua.edu

Andrew Loftus
University of Illinois
aloftus@jillinos.edu

21



Photo Credits

* Slide 4 - Photo by lisaleo at Morguefile.com

* Slide 9 - https://flic.ke/p/brTebt

22



