
Claims and Beliefs about Code Clones: Do We Agree as a Community?

A Survey

Debarshi Chatterji, Jeffrey C. Carver, Nicholas A. Kraft

Department of Computer Science
University of Alabama
Tuscaloosa, AL, USA

dchatterji@ua.edu; {carver, nkraft}@cs.ua.edu

Abstract—Research on code clones and their impact on
software development has been increasing in recent years.
There are a number of potentially competing claims among
members of the community. There is currently not enough
empirical evidence to provide concrete information about these
claims. This paper presents the results of a survey of members
of the code clone community. The goal of the survey was to
determine the level of agreement of community members
regarding some key topics. While the results showed a good bit
of agreement, there was no universal consensus on all topics.
Survey respondents were not in complete agreement about the
definitions of Type III and Type IV clones. The survey
respondents were more uncertain about how developers
behave when working with clones. From the survey it is clear
that there are areas where more empirical research is needed
to better understand how to effectively work with clones.

Keywords-survey; code clones; clone evolution; clone
management; software maintenance; developer behavior.

I. INTRODUCTION

The community of code clone researchers has become
well-established as evidenced by the success of International
Workshop on Software Clones (IWSC) for example. As a
community becomes more successful and diverse, there is
the potential for divergence among members of the
community with regards to their opinions about the current
state of knowledge, the most important research goals, and
the roadmap for future research. We believe that the code
clone community is quickly approaching this point, if it is
not already there. Our goal in this paper was to gather
information from the code clone community to identify and
document areas of agreement and disagreement, with any
eye towards initiating a discussion about future research
directions. To provide a bit of background, the remainder of
this section illustrates some of the areas in which there is a
need to gather information from across the community.

Before describing the research motivation in detail, we
provide a brief description of our research methodology.
The best way to quickly gather the opinions of a large group
of distributed experts is via survey [8]. In our case, to begin
to understand and document the level of agreement, we
created and distributed an online survey to gather
information from members of the code clone community
regarding some of the most important topics as described in

Section II. The details of the survey design are provided in
Sections III and IV.

The rapid progression of code clone research has
resulted in numerous techniques and tools for clone
detection, management, and visualization. In addition,
researchers have conducted a number of empirical studies
designed to validate the various properties and
characteristics of those tools and techniques. However, in
many of these cases, researchers have made different
assumptions and used different definitions when designing
and reporting their studies. As a result, it is not always
obvious how to compare results across studies.

The remainder of the paper is organized as follows.
Section II provides some background on code clone research
which leads to the research hypothesis. Section III describes
the design of the survey. Section IV describes the pilot study
of the survey. Section V discussion the demographics of the
survey respondents. Section VI analyzes and discusses the
results of the survey. Finally Sections VII, VIII and IX
suggest future work, identify the threats to validity of the
study and draw conclusions respectively.

II. RESEARCH GOALS

In our own survey of the literature and impressions from
interacting with the community, we identified three areas in
which we believed that a survey could make a contribution
to the code clone community. The following three
subsections describe each of these research thrusts in more
detail along with some background literature that motivated
their inclusion in the survey.

A. Research Thrust 1: General Clone Usage Information

In this thrust, we focus on the definitions of clone types
and high-level uses of clone information. In order to move a
community forward, there is a need for a set of concrete and
agreed upon definitions of key terms. While it is a widely
accepted belief that there are different types of clones that
impact software differently, it is not clear whether there are
consistent, agreed upon definitions. Some researchers
defined different types of code clones depending upon the
level of similarity of the code fragments [1, 2, 6]. However,
the similarity and size thresholds for determining that code
fragments are clones is not clearly defined. A common
classification of clone types is as follows [10]:

 “Type I: Code fragments are identical except for
variations in whitespace, layout, and comments.

 Type II: Code fragments are structurally and
syntactically identical except for variations in
identifiers, literals, types, layout and comments.

 Type III: Code fragments are copies with further
modifications. Statements can be changed, added or
removed in addition to variations in identifiers, literals,
types, layout and comments.

 Type IV: Two or more code fragments perform the
same computation but are implemented through
different syntactic variants.”

In our survey, we wanted to understand the general
acceptance of these definitions.

A second general topic was the ratio of cloned code to
non-cloned code. The current belief is that code clones are
not necessarily harmful. However, developers do need to
track them. Therefore, we can hypothesize that code clones
are important for system quality. To better understand this
point, we asked respondents about the effect of the clone
ratio on code quality.

B. Research Thrust 2: Clones and Developer Behavior

It is a widely accepted fact that code clones impact
software maintenance. While there have been some studies
focused on understanding developer behavior during
maintenance tasks [4, 7], there is not enough evidence to
draw any general conclusions about management of clones
or use of clone-aware tools.

Our expectation from this survey was to determine
whether there was any disagreement or confusion within the
community regarding claims and beliefs about developer
behavior. In practice, developers have some expectations
from their tools, but there is currently not a body of empirical
evidence to suggest exactly what these expectations should
be. Such evidence would require a number of empirical
studies. The goal of this survey was not to prove any claims,
but rather to lay a foundation for constructive discussion at
the workshop and suggest directions for future work.

C. Research Thrust 3: Clone Evolution

A newer research direction within the clone community
focuses on how cloned code evolves over time. As this code
changes, it exhibits various patterns and characteristics. An
analysis of clone evolution can reveal, for example, which
clones are change-prone and which clones are long-lived
[9]. Developers can use this information to better manage
clones. In the survey, we wanted to understand the current
beliefs about clones and their evolution.

III. SURVEY DESIGN

Based on the three research thrusts described in the
previous section, we designed a 30-question survey with
three distinct sections, including some demographic
questions. The survey questions are provided in Sections V
and VI along with the analysis of the results from each
question. To reduce the time burden on the survey

respondents, we included as many multiple choice questions
as possible. The survey contained 14 multiple choice
questions along with an optional field to explain the given
answer. In a survey like this one, where we are trying to
gather the current beliefs in the community, it is not
possible to make all questions multiple choice. So, the
survey contained 8 short answer qualitative questions. In
addition to those, there were 8 objective questions, which
required selection from choices or a one word answer.

Out of the 30 questions we had to exclude six questions
because there were not enough responses to provide any
useful insight. The remainder of this paper discusses the
results of the remaining 24 questions. (Note that we
renumbered the questions in the paper for simplicity.)

Using the list of papers posted on Dr. Robert Tairas’
website1, we generated a list of experts in the code clone
community to serve as the audience for our survey. We
identified 71 people to include on the distribution list for the
survey. We sent the initial email out in the third week of
November, 2011. After two reminders, we closed the survey
in the second week of January, 2012.

IV. PILOT

Before distributing the survey to the mailing list, we
conducted a pilot study to debug and improve it. Three local
researchers with knowledge of code clone research
participated in the pilot. We used a two-phase pilot study.
First, two of our pilot participants took an initial version of
the survey and suggested improvements. The comments
primarily concerned the wording of some questions and the
length of the survey. After making these changes, we had a
third pilot participant take the survey. The only change
suggested by this third pilot participant was to add a ‘not
familiar’ option to the multiple choice questions. After this
change, we considered the survey complete.

V. RESPONDENT DEMOGRAPHICS

This section discusses the demographics for the 22
survey responses we received. To get a sense of the interests
of the survey respondents, we asked them to select their
primary and secondary research areas related to clones.
Figure 1 shows the distribution of the primary and
secondary research interests among the five choices
provided. We came up with these choices based on our
understanding of the code clone area. One interesting
observation from Figure 1 is that the code clone research
seems to be heavily focused on clone detection research,
with little focus on clone visualization.

To get a more detailed understanding of the specific
topics that survey respondents were familiar with, we asked
them to indicate which of the following topics they were
familiar with:

A. Causes and effects of clones;
B. Effect of clones on system complexity and quality;

1 http://students.cis.uab.edu/tairasr/clones/literature/

C. Applications of clone analysis;
D. Tools and systems for detecting and analyzing

software clones;
E. Techniques and algorithms for clone detection,

analysis, and management;
F. Clone and clone pattern visualization;
G. Clone evolution and variation;
H. Evaluation and benchmarking of clone detection

methods;
I. Role of clones in software system evolution;
J. Clone management;
K. Clone analysis in families of similar systems;
L. Refactoring through clone analysis;
M. Clone-aware software design and development;
N. Others.
These categories were obtained from the call for papers

of IWSC 2011. We allowed each respondent to select as
many topics as they wanted to. Figure 2 shows the results.
One thing we noticed about the list of topics was that, the
first three topics were more general than the other topics.
Therefore, we expected all respondents to select one or
more of the first three items. The results showed that all but
one respondent selected at least one of those three, with just
over 50% selecting all three. Consistent with the response to
the first question, 80% of the respondents selected both D
and E which are related to code clone detection tools and
techniques.

The remaining demographic questions (shown in Table
1) help to characterize the respondents. This characterization
provides some context for the analysis discussed in Section
VI. From D1, 86% of the respondents work at Universities,
9% work at Research labs while 5% work in the Industry.
For Question D2, we can argue that the responses could be
ordered as follows (in decreasing order of credibility):
Professor > Researcher > Post Doc > Graduate Student >
Undergraduate Student. Figure 3(a) shows that our
respondent population is skewed towards the higher
credibility end of the spectrum. Similarly, for question D4,
more years of experience should translate into more
credibility in general. Figure 3(c) again shows the response

skewed towards higher credibility. Figure 3(c) shows the
responses from question D4. Finally, the data from question
D5, shows that the vast majority of respondents, 86%, are
currently involved in clone research and therefore should be
more credible than those who are not currently involved in
clone research. The answers to Questions D2, D4 and D5
indicate that the respondent pool had high credibility and
therefore likely provided answers that are trustworthy.

VI. DATA ANALYSIS

Before describing the detailed results from the survey,
we first describe the analysis process. Because our survey
was exploratory, it contained a number of open-ended,
qualitative questions. To analyze these responses, we
adopted a systematic qualitative data analysis approach.
Two of the authors went through the responses to each
question to develop a bottom-up coding scheme (i.e.,
directly from the data rather than from an a priori list of
codes) that grouped responses into a small number of
categories for further analysis.

 agreed upon a combined coding scheme and used this
coding scheme to classify the survey responses. We
compared our results to identify any discrepancies. There
were only a small number of responses which were coded
differently. The two researches discussed these items and
agreed upon a final code for each one. We used the same
analysis process for all of the open-ended questions. The
following subsections provide and analysis for each of the 3
distinct research thrusts defined in Section II.

Figure 1: Primary and Secondary Areas of Research

Figure 2: Familiarity distribution

TABLE 1: DEMOGRAPHIC SECTION

DEMOGRAPHIC QUESTIONS
D1. What type of institution is your primary employer?
D2. At the institution indicated in Question D1, what is your
primary role?
D3. In which country are you currently working?
D4. How long have you conducted research in the area of code
clones?
D5. Are you currently conducting research in the area of code
clones?

N
u

m
b

er
 o

f
P

ar
ti

ci
p

an
ts

N
u

m
b

er
 o

f
P

ar
ti

ci
p

an
ts

A. RT1: General Clone Usage Information

Table 2 shows the general survey questions. The
respondents were fairly evenly divided with regards to
whether clone ratio is a measure of system quality (45% -
no vs. 55% - yes). Further study is required to determine
whether clone ratio is a useful measure of quality. The
remainder of this section gauged whether members of the
community tended to agree upon the definitions clone types
described in Section II. Figure 4 shows the distribution of
the answers for all four clone types.

While all respondents agreed upon the definition for
Type I clones, one preferred the term “identical clones” to
the term “Type 1 clones”. Regarding the definition of Type
II clones, the three respondents who disagreed with the
definition generally expressed concern with the ambiguity
of this definition as compared to the definitions of Type I
and Type III clones. Similarly, the respondents who
disagreed with the definition of a Type III clone had issues
with the ambiguity of the boundaries between Type II, Type
III and Type IV clones. One thought that Type II and III

clones should be merged into one group, two said that Type
II clones are more like Type IV clones, and the rest of the
negative respondents were concerned about the definition of
terms like ‘further modifications’. Finally, regarding Type
IV clones, of the six respondents who disagreed, one
suggested that Type IV clones are the only ones that should
be called “code clones” because the other types were mostly
identical code. Another respondent suggested that the
definition of Type IV clones was too broad. Others
expressed their confusion over the boundary between Type
III and Type IV clones.

B. RT2: Clones and Developer Behavior:

The next set of questions focused on understanding
developer behavior related to clones while performing
maintenance tasks. This section contained two types of
questions: questions about specific developer
actions/expectations and questions about literature claims
regarding the maintenance of code clones. The former type
was intended to gather knowledge on the beliefs of the
researchers from the community while the later was
intended to gather their opinions about claims.

 (a) D2 (b) D3 (c) D4

Figure 3: Demographics

TABLE 2: GENERAL SECTION

GENERAL QUESTIONS
G1. Do you think that the clone ratio in a software system can be
a measure of the quality of the system? Please explain briefly.
G2. Type 1: Code fragments are identical except for variations in
whitespace, layout, and comments. Do you agree? If no, give
your definition?
G3. Type 2: Code fragments are structurally and syntactically
identical except for variations in identifiers, literals, types, layout
and comments. Do you agree? If no, give your definition?
G4. Type 3: Code fragments are copies with further
modifications. Statements can be changed, added or removed in
addition to variations in identifiers, literals, types, layout and
comments. Do you agree? If no, give your definition?
G5. Type 4: Two or more code fragments perform the same
computation but are implemented through different syntactic
variants. Do you agree? If no, give your definition?

Figure 4: Agreement on Clone Type Definitions

Number of Participants

All the observations about developer behavior discussed
below are mere hypotheses at this point. Additional
empirical studies, focused specifically on these questions
can provide the data required to validate or refute these
claims.

Due to a lack of qualitative response for three of the
questions about ‘claims’ we were able to analyze only
quantitative the responses. The first of these questions asked
whether systems with distributed authorship are more prone
to inconsistent changes [11]. The responses were: 11 – Yes,
2 – No and 9 – Don’t Know. The second question asked
whether an experienced developer tends to use a symptom
driven approach and go directly to the problem region
therefore making a snapshot tool more appropriate for them
[5]. The responses were 4 – Yes, 1 – No and 17 – Don’t
know. The third question asked whether an inexperienced
developer uses a typographic debugging strategy (i.e.
examining code line by line) making a visualization tool
more effective for them [5]. The responses were 4 – Yes, 3 –
No and 15 – Don’t know.

Question M1 asked the respondents to indicate when
developers address clones. Figure 5 shows the answer
choices and distribution of responses. Most respondents that
answered “other” indicated that it depends upon the task as
hand. Interestingly enough, two respondents specifically said
that this question needs a study to validate it.

Questions M2 through M8 required open-ended respones
and were analyzed using the process described in Section

VI. Table 3 shows the results of this analysis. Question M9
relates to a claim from the literature [3]. The first column

provides the text of the question. The second column
describes the reason why the question was included. The
third column presents the elements of the coding scheme
that resulted from the anslysis. Finally, the fourth column

shows the number responses for each category.
These responses suggest that maintenance tasks which

have a broad impact or affect long-term system qualities
should be assisted with clone evolution information.
Whereas, short term or relatively minor types of
maintenance, such as bug fixing or adding modular
functionality, do not require expensive information provided
by the evolution tools. However, these results are only
suggestions; proper studies need to be performed to collect
evidence.

A majority of the respondents said that removing clone
groups provides long-term benefits to quality. An open
question is: What are those long-term benefits?
Additionally, the responses indicate that it is better to leave
cloned fragments if there is a risk involved that refactoring
might render a part of the system or the whole system not to
function the way it should.. The respondents thought it okay
to independently evolve clone fragments that occur in
different contexts. The respondents also thought that
developers consistently propagate clones of which they are
aware.

C. RT3: Clone Evolution

The last set of questions focused on clone evolution
including: late propagation and the impact of system age.
Only three questions received enough responses to properly
analyze. Because these questions were all open-ended, we
followed the analysis process described in Section VI. Table
4 shows the results of the analysis, using the same columns
as in Table 3. A majority of the respondents indicated that
clone evolution information could be useful for some
specific tasks.

VII. ROADMAP FOR FUTURE WORK

The primary aim of this survey was to develop a
roadmap for empirical research about code clones. This
survey identified a number of open questions in need of
further empirical study. In this section, we present a list of
research question that are derived from the observations
earlier in the paper.

First, it is clear that there is a general lack of consensus
about the appropriate differentiation among different types
of clones. In order to make any significant progress in an
area, we must have agreed upon definitions. Therefore, the
first open question in need of further research is:

1. How should types of code clones be defined so
they provide useful differentiation relative to other
important research questions?

Second, in regards to developer behavior during
maintenance, there is not widespread agreement on the use
of clone information in some key development activities.
Currently, many beliefs are based upon anecdotal evidence
rather than objective empirical evidence that can result from
empirical studies. Such studies would help to eliminate
some of the disagreement within the community. Some
specific questions in need of further research include:

2. How does when a developer addresses clones affect
how they address clones?

3. How does the type of maintenance (i.e. broad vs.
localized) affect the importance of clone
information?

4. When is it beneficial to remove a clone group?
What benefits can be realized by this action?

5. In what ways can visualization of clone
information help developers?

Finally, related to clone evolution, there is a trade-off
between the expense of tracking clone evolution information
and its importance for version-sensitive maintenance tasks.
There is a need to understand how best to use clone
evolution information. Specific research questions include:

6. How does the cloning pattern change with system
age?

7. Can we identify develop a mechanism for easily
identifying cloning patterns which could ease
evolution tasks?

TABLE 3: SYSTEMATIC QUALITATIVE ANALYSIS OF MAINTENANCE RELATED SECTION

Question Intention Coding Responses

M2. Describe a maintenance
scenario or task when
developers track code
clones.

Estimate the situations in
which developers track
code clones so that the tools
built to assist the
developers can be fine-
tuned to certain scenarios.

Refactoring 3
Fixing bugs 6
Making a change in multiple locations 3
Performing a quality assessment 5

Other answers 2

M3. Describe a maintenance
scenario or task where
static clone information
from the current version of
the system is useful.

Estimate the situations in
which clone information
from the current version is
substantial.

Fixing bugs 7
Refactoring 4
Performing a quality assessment 4
Ensuring consistent propagation of clones in a
group

2

Other answers 0

M4. Describe a maintenance
scenario or task where clone
evolution information over
a limited history of the
system is useful.

Estimate the situations
where more detailed clone
information over the
multiple versions of the
system might be required.

Judge the evolution of the system through version
in terms of increase or decrease in the number of
clones or other propagation related issues.

3

Determine history of a ghost fragment that may
have diverged out of a clone group in some
previous version

2

Fixing bugs 2
Tracking the appearance or disappearance of
clones

3

Deciding whether to refactor based on
identification of changes that might break the
system or affect its quality

4

Other answers 0

M5. Describe a maintenance
scenario or task where you
would remove a clone/clone
group via refactoring.

To judge scenarios where
developers get rid of clones
from the system, thus
lowering the clone ratio
over a period of time.

Clones that can be merged into a parameterized
function

3

When removing clones might help improve the
quality of the system giving long term benefits.

7

Clones which are identical or nearly identical. 4
Buggy code fragments that get affected in a
similar way

4

Other answers 4

M6. Describe a maintenance
scenario or task where you
would leave a clone/clone
group untouched?

To judge scenarios where
developers would not touch
or refactor clones in order
to change system quality.

A change might harm the system 7
Cloned parts that never change or are never
refactored

3

In case the clones have separately evolved 4
Not being sure of what to change 6
Other answers 3

M7. Describe a maintenance
scenario or task where it is
ok to make an inconsistent
change to clones within a
clone group.

To judge the reasons of
inconsistent propagation of
clones. A situation that
might lead to ghost
fragments.

Planned independent evolution to a part where the
contexts of the cloned parts are different

5

Planned independent evolution where the purpose
varies to change a certain cloned fragment

4

Planned independent evolution to add a new
functionality to a particular clone in a group

3

Other answers 2

M8. Describe a maintenance
scenario or task in which
you would make a
consistent change to a
clone/clone group.

To judge a scenario where a
developer would find all the
cloned fragments in a clone
group to evolve them
consistently.

Fixing bugs 9
Cannot be refactored or changed due to
constraints

6

Identical code designed such that a change one
part requires a change in others

6

Other answers 3

M9. Clones located in
different files are more
likely to be refactored than
the clones in the same file
[3]

To estimate if a developer
necessarily tries to find the
code fragments or is this
action causal on the ease of
finding the cloned
fragment.

Proximity enables easy identification and
refactoring

3

Code refactoring is easier to perform at different
places in the same file than in different files.

3

Depends on the situation and the level of coupling 3
Other answers 0

VIII. THREATS TO VALIDITY

This section describes the threats to validity for our
survey. Related to external validity, our sample contained
22 respondents. Even though that number is small, it still
reflects a 31% response rate (which is quite good). Even so,
we cannot be sure that the sample is representative of the
entire code clone community.

Related to construct validity, many of the survey
questions were based on claims from the literature that have
not been proven. It is possible that our selection of questions
either excluded important topics or could have been
misunderstood or misinterpreted by some of the survey
respondents. But, we have no evidence of this problem.

Related to internal validity, we performed a bottom-up
qualitative analysis of the survey responses. It is possible
that we were biased in our interpretation of the answers. We
avoided this threat as much as possible by having two
researchers independently evaluate the data. Furthermore,
we did our best not to “read in” any information to a
response and use only the text that was provided.

IX. SUMMARY AND CONCLUSION

This paper presents the results of a survey conducted
within the code clone research community to explore the
level of agreement among community members on a
number of important topics. Twenty-two members of the
community responded to our survey request and provided
some useful responses. The results show that in some cases,
such as the definition of a Type I clone, there is general
agreement, while in other cases, such as the effect of clone
ratio on a system, there is strong disagreement. These results
indicate that there is a need for empirical work to begin
providing insight into some of these questions via data that
can be collected from human participants.

ACKNOWLEDGEMENTS

We thank all the respondents for taking some time out of
their invaluable time to take the survey. We acknowledge
support from NSF grant CCF-0915559.

REFERENCES
[1] Baxter, I. D., Yahin, A., Moura, L., Sant'Anna, M. and Bier, L. "Clone

detection using abstract syntax trees." In Proc.Proceedings of the
International Conference on Software Maintenance. 1998. pp. 368.

[2] Bellon, S., Koschke, R., Antoniol, G., Krinke, J. and Merlo, E.,
"Comparison and Evaluation of Clone Detection Tools," IEEE
Transactions on Software Engineering, 33(9): 577-591. 2007.

[3] Cai, D. and Kim, M. "An empirical study of long-lived code clones." In
Proc.Proceedings of the 14th International Conference on
Fundamental Approaches to Software Engineering: Part of the Joint
European Conferences on Theory and Practice of Software. 2011. pp.
432-446.

[4] de Wit, M., Zaidman, A. and van Deursen, A. "Managing code clones
using dynamic change tracking and resolution." In Proc.Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on.
2009. pp. 169-178.

[5] Jablonski, P. and Daqing Hou. "Aiding software maintenance with
copy-and-paste clone-awareness." In Proc.Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on. 30 2010-july 2,
2010. pp. 170.

[6] Kamiya, T., Kusumoto, S. and Inoue, K., "CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,"
IEEE Transactions on Software Engineering, 28(7): 654-670. 2002.

[7] Kim, M., Bergman, L., Lau, T. and Notkin, D. "An ethnographic study
of copy and paste programming practices in OOPL." In
Proc.International Symposium on Empirical Software Engineering
(ISESE). 2004. pp. 83-92.

[8] Nguyen-Hoan, L., Flint, S. and Sankaranarayana, R. "A survey of
scientific software development." In Proc.Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. 2010. pp. 12:1-12:10.

[9] Pate, J. R., Tairas, R. and Kraft, N. A., "Clone evolution: A systematic
review," Department of Computer Science, University of Alabama,
Tech. Rep. SERG-2010-01, Dec. 2010, 2009.

[10] Roy, C. K., Cordy, J. R. and Koschke, R., "Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,"
Science of Computer Programming, 74(7): 470-495. 2009.

[11] Thummalapenta, S., Cerulo, L., Aversano, L. and Di Penta, M., "An
empirical study on the maintenance of source code clones," Empirical
Software Engineering, 15(1): 1-34. 2010.

TABLE 4: SYSTEMATIC QUALITATIVE ANALYSIS OF EVOLUTION RELATED SECTION

Questions Intention Coding Responses

E1. Is clone evolution information
useful to developers? Why or why
not?

To estimate if the extra resources
spent in capturing clone
information over multiple
versions of the system is worth
the extra effort.

To check what has happened to a clone
or a clone group over a period of time.

6

Locate clones that have inconsistently
diverged

4

The see how the code evolved. 6
Other answers 3

E2. Do you think the clone
evolution pattern can be impacted
by how long a system has existed
(long-lived systems vs. newly
developed systems)?

To estimate the effects of long
lived systems.

Old and large systems are more prone to
code reuse.

3

Older systems will have more
inconsistencies.

4

Other answers 1
E3. Developers tend to consistently
propagate clone changes
immediately where needed [11].

To judge developer behavior
regarding consistent
propagation.

If they are aware of the clones 3

Other answers 2

