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Abstract

Context: Scientists have become increasingly reliant on software in order to

perform research that is too time-intensive, expensive, or dangerous to perform

physically. Because the results produced by the software drive important deci-

sions, the software must be correct and developed efficiently. Various software

engineering practices have been shown to increase correctness and efficiency in

the development of traditional software. It is unclear whether these observations

will hold in a scientific context.

Objective: This paper evaluates claims from software engineers and scien-

tific software developers about 12 different software engineering practices and

their use in developing scientific software.

Method: We performed a systematic literature review examining claims

about how scientists develop software. Of the 189 papers originally identified,

43 are included in the literature review. These 43 papers contain 33 different

claims about 12 software engineering practices.

Results: The majority of the claims indicated that software engineering

practices are useful for scientific software development. Every claim was sup-

ported by evidence (i.e. personal experience, interview/survey, or case study)

with slightly over half supported by multiple forms of evidence. For those claims

supported by only one type of evidence, interviews/surveys were the most com-

mon. The claims that received the most support were: “The effectiveness of
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the testing practices currently used by scientific software developers is limited”

and “Version control software is necessary for research groups with more than

one developer.” Additionally, many scientific software developers have uncon-

sciously adopted an agile-like development methodology.

Conclusion: Use of software engineering practices could increase the cor-

rectness of scientific software and the efficiency of its development. While there

is still potential for increased use of these practices, scientific software devel-

opers have begun to embrace software engineering practices to improve their

software. Additionally, software engineering practices still need to be tailored

to better fit the needs of scientific software development.

Keywords: Computational Science, Systematic Literature Review, Scientific

Software

1. Introduction

Scientists and engineers often use computational modeling to replace (or

augment) physical experimentation. For the remainder of this paper we will

refer to the software created by these scientists and engineers as scientific soft-

ware. The following examples help to illustrate some of the key reasons why

computational models are becoming increasingly important in science and engi-

neering domains. First, computational models allow scientists to react to events

in near real-time. In meteorology, computational models allow scientists to

adjust their forecasts based upon current conditions and analyze the poten-

tial effects of changing conditions. Without such models, meteorologists would

have to extrapolate from historical data, which is time-consuming and too slow

for real-time forecasts. Second, computational models allow scientists to study

phenomena that occur at a very slow pace in reality. In climate science or geol-

ogy, the slow pace of many natural phenomena make it infeasible for scientists

to rely solely on empirical observations to draw conclusions. Computational

models allow scientists to study these phenomena at a much more rapid pace.

Third, computational models allow scientists to study phenomena that are too
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precise for manual observation. In astronomy and astrophysics, the combina-

tion of software models and advances in digital imaging systems have combined

to allow scientists to discover new solar systems that are too faint for human

detection. Finally, computational models allow scientists to study phenomena

that are too dangerous to study experimentally. In astrophysics, it is much safer

for scientists to use computational models to explore the effects of various types

of nuclear reactions compared with conducting physical experiments.

As these examples highlight, scientists and engineers are increasingly reliant

on the results of computational modeling to inform their decision-making pro-

cess. Because of this reliance, it is vital for the software to return accurate

results in a timely fashion. While the correctness of the scientific and math-

ematical models that underlie the software is a key factor in the accuracy of

results, the correctness and quality of the software that implements those mod-

els is also highly important. Additionally, the software’s performance must be

fast enough to provide results within the desired time window. To complicate

these requirements, scientific software is typically complex, large, and long-lived.

The primary factor influencing the complexity is that scientific software must

conform to sophisticated mathematical models [1]. The size of the programs also

increases the complexity, as scientific software can contain more than 100,000

lines of code [2, 3]. Finally, the longevity of these projects is problematic due

to developer turn-over and the requirement to maintain large existing code-

bases while developing new code. Section 2 provides more details about these

characteristics of scientific software.

In the more traditional software world, software engineering researchers have

developed various practices that can help teams address these factors so that the

resulting software will have fewer defects and have overall higher quality. For

example, documentation and design patterns help development teams manage

large, complex software projects. Version control is useful in long-lived projects

as a means to help development teams manange multiple software versions and

track changes over time. Finally, peer code reviews support software quality and

longevity, by helping teams identify faults early in the process (software quality)
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and by providing an avenue for knowledge transfer to reduce knowledge-loss

resulting from developer turn-over (longevity).

Furthermore, software engineering practices are important for addressing

productivity problems in scientific software. Even though the speed of the

hardware is rapidly increasing, the additional complexity makes it more dif-

ficult for scientists to be productive developers. According to Faulk et al, the

bottlenecks in the scientific development process are the primary barriers to in-

creasing software productivity and these bottlenecks cannot be removed without

a fundamental change to the scientific software development process [4].

The previous paragraphs highlighted the software quality and productivity

problems that scientific software developers face. Because developers of more

traditional software (i.e. business or IT) have used software engineering prac-

tices to address these problems, it is not clear why scientific software developers

are not using them. Throughout the literature, various CSE researchers and

software engineering researchers have drawn conclusions about the use of soft-

ware engineering practices in the development of scientific software. To date,

there has not been a comprehensive, systematic study of these claims and their

supporting evidence. Without this systematic study, it is difficult to picture the

actual effectiveness of SE practices in scientific software development. Based on

our own experiences interaction with scientific software developers, we can hy-

pothesize at the outset that the relatively low utilization of software engineering

practices is the result, at least in part, of two factors: 1) the constraints of the

scientific software domain (Section 2) and 2) the lack of formal training of most

scientific software developers.

This paper has three primary contributions.

1. A list of the software engineering practices used by scientific software

developers;

2. An analysis of the effectiveness of those practices; and

3. An analysis of the evidence used to show effectiveness.

4



Therefore, the goal of this paper is to analyze information reported in

the literature in order to develop a list of software engineering prac-

tices researchers have found to be effective and a list of practices

researchers have found to be ineffective. In order to conduct this anal-

ysis, we performed a systematic literature review to examine the claims made

about software engineering practices in the scientific software literature and in

the software engineering literature. In this paper, we define a claim as: any

argument made about the value of a software engineering practice, whether or

not there is any evidence given to support the argument. In particular, we are

interested in identifying those claims that are supported by empirical evidence.

The remainder of this paper is organized as follows: Section 2 provides

background on previous research about SE for scientific software. Section 3

describes the research methodology used in this systematic literature review.

Section 4 reports the scientists’ and software engineers’ claims about SE for

scientific software.

2. Background

Traditional software development focuses on the process of developing soft-

ware to fulfill the needs of a customer. This focus on the process has led soft-

ware engineers to emphasize quality of the code itself. Scientific software, on

the other hand exists primarly to provide insight into important scientific or

engineering questions that would be difficult to answer otherwise. Because the

goal for scientific software developers is the creation of new scientific knowledge,

the emphasis placed on software quality (i.e. correctness of code, maintainabil-

ity, and reliability) has been historically lower than seen in more traditional

software engineering [1]. Furthermore, even for developers who place a great

deal of emphasis on software quality, it is likely that at least some existing soft-

ware engineering practices must be tailored to be effective in scientific software

development [5].

The remainder of this paper focuses on the suitability of existing software
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engineering practices to address the issues facing scientific software developers.

To provide some background, it is important to describe the scientific software

community. While the scientific software community is not monolithic, Basili et

al. [6] enumerated three characteristics that are common across the majority of

the community. In addition to these common characteristics, Basili et al. [6] also

enumerate three variables that differentiate projects within the scientific soft-

ware community. The following subsections describe the common and variable

aspects, respectively

2.1. Common Characteristics of Scientific Software Development

According to Basili et al., [6], there are three characteristics that provide

a backdrop that is essential to understand the claims that have been made

regarding scientific software development.

1. Source of software development knowledge - Rather than obtaining

their software development knowledge via a traditional software engineer-

ing (or computer science) education, many scientific software developers

obtain their knowledge from other scientific developers (who also lack for-

mal training). This lack of formal training often leaves scientific software

developers blind to much of the field of software engineering that could

provide much greater control over the quality of their code. Additionally,

for those software engineering principles with which they are aware, sci-

entific developers may be unsure of how to tailor and apply them in their

particular environment. Carver et al. [7] also observed this characteristic.

2. Unplanned increase in project size - Rather than expending effort to

initially design unproven software to be useful on a large scale, scientific

software developers typically design their software to be relatively small.

Only when the software package finds success in the community does it

begin to grow. As a result, later modifications become increasingly difficult

and error-prone. Hinsen [8] also observed this characteristic.
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3. Typical user base - Most scientific software (with the exception of some

libraries and large commercially-avaiable software pacages - see item 3b in

the next subsection) is used by its developer or members of the developer’s

research group. This internal use leads developers to discount usability

(because they can just fix problems as they arise during use), which in

turn reduces overall maintainability.

2.2. Variables Within Scientific Software Development

It is important to understand that there is not one monolithic community

of scientific software developers. According to Basili et al., [6] there are three

primary variables that help developers better understand how best to integrate

software engineering practices into their specific project.

1. Team size – scientific software projects tend to be developed either by a

single developer, who is typically also the only users, or by a large group

of developers, which are often distributed.

2. Useful lifetime of software – There are two general types of scientific

software, with a small number of projects falling between these two polls:

(a) Kleenex software – intended to be used only once or twice, therefore

good software engineering practices are less important.

(b) Community or library software - intended to be used multiple times,

often outside of the developer group, therefore requires better soft-

ware engineering practices to help ensure its correctness and perfor-

mance.

3. Intended users of the software –

(a) Internal – software engineering practices are less common because

the developers care less about the maintainability of the software or

the usability of the interfaces. Maintainability and usability matter

less in this case for two reasons. First, the software is not usually

planned to be used for an extended period of time, therefore less

7



effort will be spent maintaining the software. Second, the software

will be used by the people who developed it, so the interfaces will be

used by people who already understand them.

(b) External – software engineering practices are more common because

the readability and maintainability of the code is more important as

well as the usability of the user interfaces. Software intended for ex-

ternal users, on the other hand, is frequently expected to be used long

term. The software will also be used by people who aren’t already

familiar with the interfaces, so the interfaces should be intuitive.

(c) Both – results in an additional layer of complexity because teams

must maintain multiple versions of the software (e.g. an internal

development version and a stable release version).

3. Methodology

The following subsections describe the steps of the Systematic Literature

Review (SLR) process we followed [9].

3.1. Research Questions

There have been many claims made about how scientists develop software.

But as of yet, there have been no systematic reviews of the literature from

both scientific software development and software engineering to collect and

validate those claims. Therefore, the main purpose of this review is to survey

the literature from both disciplines to answer two questions:

1. What claims have researchers made about the usage of software engineer-

ing practices in the development of scientific software?

2. What empirical evidence exists to validate these claims?

3.2. Source Selection

In order to gain as much coverage of the software engineering and scientific

software domains, we searched the following five databases:
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• ACM Digital Library,

• IEEE eXplore,

• ScienceDirect,

• SIAM Publications Online, and

• Google Scholar.

Our initial search string, “scientific software development”, returned an over-

whelming number of results, many of which were irrelevant. The revised search

string, “scientific software development” AND “software engineering” resulted

in a more manageable 349 papers. After reviewing these papers, we identified

the list of applicable software engineering topics described in Table 4. To help

ensure the completeness of our search, we repeated the search by replacing “soft-

ware engineering” with each of these 11 terms. These additional search strings

resulted in the identification of a total of 718 papers. Some of which were

duplicates of those identified in the initial search. We conducted this search

throughout May 2015.

3.3. Study Selection

We used the following steps to reduce those 718 papers down to the most

relevant set to include in the review.

1. De-duplication: Remove any duplicates from the returned papers;

2. Title-based exclusion: Use the title to eliminate any papers clearly not

related to the research focus;

3. Abstract-based exclusion: Use the abstract and keywords to exclude papers

not related to the research focus; and

4. Full text-based exclusion: Read the remaining papers and eliminate any

that do not fulfill the criteria described in Table 1.
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Table 1: Inclusion and exclusion criteria
Inclusion Criteria Exclusion Criteria
Paper must be in the CSE software
domain

Studies not in english

Paper must focus on the development
of CSE software

Preliminary Conference Versions of
included journal papers

The development section must men-
tion SE topics

Studies not in english

Study does not make claims about
SE topics
Study is a book chapter, introduc-
tion, or index

The de-duplication and title-based exclusion steps eliminated 459 papers,

leaving 259. The abstracts did not contain sufficient information to eliminate

any additional papers. Finally, the full text review allowed us to eliminate 32

papers that did not give enough detail about the development of the software and

161 that did not make any claims about software engineering practices. Table 2

shows the distribution of publication venues for the 66 papers that made it to the

Data Extraction Step. One paper was published in a non-peer reviewed source,

Advances in Computers. This paper was included as it provided a significant

amount of information.

3.4. Data Extraction

Table 3 shows the items contained in the data extraction form we used

to ensure consistent and accurate gathering of information from each paper.

During the data extraction process, the first author performed the primary

extraction for the review while the second extracted data from a random sample

of 5% of the papers. We then compared the data extracted by each reviewer for

consistency. We found that the data extracted from the samples by the second

author was consistent with the data extracted by the first author. This process

is consistent with the process followed in previous systematic reviews [10, 11,

12, 13, 14].
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Table 2: Paper Distribution

Source Count
Computing in Science and Engineering 15
ICSE Workshop on Software Engineering for Computational Sci-
ence and Engineering

10

IEEE Software 6
IEEE International Conference on Software Engineering 4
ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement

3

ACM Conference on Computer Supported Cooperative Work and
Social Computing

3

International Conference on Software Testing, Verification, and
Validation

2

SIAM Journal on Scientific Computing 2
Empirical Software Engineering 1
IEEE Power Engineering Society Winter Meeting 1
International Journal of High Performance Computing Applica-
tions

1

CTWatch Quarterly 1
IEEE International Conference on e-Science 1
Advances in Computers 1
Computer 1
IEEE International Geoscience and Remote Sensing Symposium 1
European Conference on Software Architechture Workshops 1
ACM Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery

1

IEEE International Workshop on Software Engineering for High
Performance Computing in Computational Science and Engineer-
ing

1

ACM International Conference on Supporting Group Work 1
SIAM Journal on Matrix Analysis and Applications 1
HPC-GECO/CompFrame Workshop 1
Workshop on Algorithm Engineering and Experiments 1
SIAM Journal on Discreet Mathematics 1
IEEE International Conference on Electro/Information Technology 1
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Table 3: Data items extracted from all the papers

Data items Description
Identifier Unique Identifier for the paper
Bibliographic Author, year, title, source
Domain The domain of the project the paper is based on
Claims A list of the claims the paper made about various SE

techniques
Evidence for Claims A list of the evidence the paper provided to justify

their claims about each technique

4. Results

In our review of the literature, we used the definitions provided by the IEEE

Standard Computer Dictionary [15] to categorize the claims about the effective-

ness of software engineering practices in scientific software into 11 practices. We

then divided these practices into two groups: (1) those that are primarily part

of the software development workflow, and (2) those that are part of the infras-

tructure that supports software development. Table 4 lists the 11 practices and

the two larger groupings. The remainder of this section describes the claims

about each of these 11 practices in more detail. Throughout the discussion, we

emphasize the claims with bold-faced text and provide additional discussion to

substantiate the claim. While the standard practice in Systematic Literature

Reviews is to provide seperate answers for each research question, in this re-

view we believed it made more sense to answer them together so that each claim

would be presented along with the evidence that supports it. Additionally, while

any particular claim may be positive or negative, the claims are worded so that

all evidence supports them.

4.1. Development Workflow

Many of the claims focus on elements of the software development workflow,

which usually includes requirements, design, implementation, testing, refactor-

ing, and documentation. The following subsections address each of these prac-

tices. The claims made in the following subsections are summarized in Tables

7-11. First the claim is presented and then the papers that made the claim are
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Table 4: SE practices

Development Workflow

Design Issues
Lifecycle Model
Documenatation
Refactoring
Requirements
Testing
Verification and Validation

Infrastructure

Issue Tracking
Reuse
Third-Party Issues
Version Control

categorized under the type of evidence they gave to support that claim. The

first category is NS, or no specific evidence given. The second is PE, or per-

sonal experience. The third category is I/S, or Interviews and Surveys. The

final category is CS, or Case Study. The papers categorized into the Case Study

category did not neccessarily perform a formal case study, but they did observe

the practice in use outside of their own personal experience.

4.1.1. Lifecycle Model

Our literature survey identified sixteen studies that contained claims about

the use of lifecycle models by scientific software developers. Table 5, summarizes

the five claims that are described in detail below.

LM1: Scientific software developers generally do not use a formal

software development methodology. We identified nine studies that made

this claim [16, 2, 3, 17, 18, 19, 20, 21]. Instead of using a formal develoment

methodology, scientists develop their software as follows:

1. The developer forms a basic idea of what is needed and begins coding.

2. The developer informally evaluates the software through questions like

“does this software do what I want?” and “Can it be usefully extended”?

3. The developer either modifies or extends the code as appropriate until the

answer to the first question above is “yes”, and the answer to the second

is “no”.
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4. The developer “tests” the software by asking “is the output broadly what

I expect?”

When the answer to step 4 is “yes,” the developer considers the project com-

plete. This approach is only successful when the developer has a thorough

understanding of the domain and what is required to solve the problem, the

developer is either the only user or part of the community that will be using

the product, and the software is meant to answer a “particular problem for a

particular group at a particular point in time.” [16]

LM2: The development methodology used by scientific software

developers is similar to the agile development methodology. A series

of studies have suggested that scientific projects are well-suited for agile develop-

ment methodologies [2, 3, 20, 22, 21, 23, 24]. When scientific projects are investi-

gating new science, they are not able to determine all of the requirements in ad-

vance. Therefore, they cannot effectively use plan-driven approaches. Instead,

the development teams need a methodology that allows them to experiment with

different solutions as the requirements are discovered. This methodology would

have to include many of the characteristics of the Agile development methodolo-

gies developed by software engineers [2]. Scientific software developers support

the observation that they generally use an agile development approach because

they do not know the requirements ahead of time [3].

Another scientific software development team suggests that the theoretical

appropriateness of agile-like approaches give benefits in the real world. The

team adopted ideas from the agile methodologies to successfully address the

specific needs of their project. Their team was spread across multiple labs and

projects, which resulted in a need for “good communication across the team,

rapid development and delivery, and project management to coordinate develop-

ment and manage dependencies.” The need for communication is addressed by

daily stand-up meetings that allow members to help each other through issues

and discuss new ideas. The needs for rapid development and project manage-

ment are met by iteration planning meetings, where they created plans for short
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development cycles [17].

LM3: Paired programming provides an effective method for deal-

ing with complex software development requirements and an effective

avenue for knowledge transfer. Paired programming ensures that all devel-

opers on their team are able to take part in design and implementation decisions.

Additionally, paired programming provides a convenient avenue for knowledge

transfer among the team, both of software development and subject matter

knowledge. Paired programming is also very valuable for the development of

complex software functions, particularly when one developer is incorporating

parts of the other developer’s software into their own code [17]. Conversely,

some scientists also say that paired programming is not natural for scientific

software developers, and so it is not useful in all cases [25, 18].

LM4: Other software development approaches can also be use-

ful in the right setting. Scientific software developers viewed three more

development practices as useful, however these were not as broadly studied:

1. Feature-driven development was successful for one team [18],

2. Test-driven development reduces the number of errors introduced into

the code for multiple teams [19, 21, 26], and

3. Iterative/incremental development allows developers to get around

the need for an up-front requirement document that is required in a water-

fall type model [16, 27]. For example, a team had previously attempted to

use a linear development methodology, but found that it was completely

unsuited for their needs and resulted in an unsuccessful first phase. They

then adopted an iterative development method for the second phase and

found it was successful [28].

LM5: Existing software development methodologies will need to

be tailored to the specific context of any given scientific software

development team. In the more traditional business/IT domain for teams

fewer than half of the teams use a published methodology. In fact, many teams
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tailor the methodology to fit their particular project [5]. For example, agile

methodologies should be the best fit for scientific software developers as these

methodologies value: “response to change over following a plan,” “individuals

and interactions over processes and plans,” and “working software over compre-

hensive documentation.” However, agile methodologies alone would not work

in every case. In one project, because of existing interfaces, there were certain

requirement specifications that had to be met. This portion of the project is

better handled by a traditional development method. In order to address the

discrepancy, it was effective to utilize a method from Boehm and Turner to

blend agile and traditional methodologies in order to minimize the risk in the

development process. This blend incorporated particular agile elements into

the project development. As an example, the project had a long time-scale

which meant that knowledge of the instrument, software and science had to be

preserved. To address this need for preservation of knowledge, the development

team utilized pair programming where a software developer was paired with sci-

entist so that the developer learns some of the scientific background of a project

and the scientist becomes familiar with the software [5].

4.1.2. Requirements

Our survey of the literature identified five studies that contained claims

about the use of requirements by scientific software developers. We group the

detailed list of claims into three over-arching claims in the following discussion.

Table 6, summarizes the three claims that are described in detail below.

RQ1: Scientific software developers often do not produce a proper

requirements specifications. Multiple studies have made this claim [29, 18,

5, 16, 30, 31]. In one particular set of interviews of scientific developers, none

created a requirements document. Even in cases where the sponsor mandated

production of a requirements document, the developers created it when the

software was almost finished. The most information an interviewee had at the

start of development was a vision statement from a customer [30]. In another

example, scientists developed using an iterative approach which allowed the
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Table 5: Lifecycle Model

Claim NS PE I/S CS
LM1: Scientific software
developers do not generally
use a formal software devel-
opment methodology

[19] [16, 17, 24] [2, 3, 18, 20]

LM2: The development
methodology used by scien-
tific software developers is
similar to the agile devel-
opment methodology

[17, 22, 23] [24] [2, 3, 20, 27, 21]

LM3: Paired programming
provides an effective prac-
tice for dealing with com-
plex software development
requirements and an effec-
tive avenue for knowledge
transfer

[17, 25] [18]

LM4: Scientific software
developers viewed feature-
driven development, test-
driven development, and
iterative development as ef-
fective

[19, 28] [16] [18, 21, 26]

LM5: Existing software de-
velopment methodologies
will need to be tailored to
the specific context of any
given scientific software
development team

[5]
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Table 6: Requirements

Claim NS PE I/S CS
RQ1: Scientific software developers often
do not produce proper requirements spec-
ifications

[16] [29, 30] [18, 5, 31]

RQ2: When scientific software develop-
ers produce requirements, they generally
focus on high-level requirements

[16] [31]

RQ3: When scientists produce high-level
requirements they rely on developers to
prioritize them

[29]

requirements to emerge over time rather than being articulated a priori. There-

fore, the lack of understanding of the need for up-front requirements, led to late

document delivery and increased time pressure on the project [5].

RQ2: When scientific software developers to produce require-

ments, they generally focus on high-level requirements. We found two

studies that made this claim [16, 31] Traditionally, because the high-level re-

quirements are part of the scientist’s domain knowledge, they tend to assume

that the task of translating these high-level functional requirements into lower-

level requirements would be trivial for software engineers. However, because

software engineers may not have the requisite scientific background to perform

this decomposition, projects end up being more expensive than necessary [16].

RQ3: When scientists produce high-level requirements, they rely

on developers to prioritize them. In one case we found [29], the lack of

scientific background made it difficult for the software developers to properly

prioritize requirements and effectively develop the software [29]. To rectify this

problem, a scientific representative had to be assigned in a later stage to prior-

itize requirements for the developers [29].

4.1.3. Design Issues

Our survey of the literature identified four studies that contained claims

about the use of software design by scientific software developers [29]. We

group the detailed list of claims into three over-arching claims in the following
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discussion. Table 7, summarizes the three claims that are described in detail

below.

DI1: In general, scientific software designers do not treat design

as a distinct step in the development process. In the first study related to

design issues, the authors interviewed twelve scientific software developers. Only

two of the interviewees actually used a separate software design step. Most of

the interviewees had backgrounds similar to those of their users. This common

background led the scientific software developers to assume that a design that

suits the use of the designer will also suit the needs of the user. There were only

two scientists, a civil engineer and a medical software developer, that could not

assume that the user would not be similar enough to the designer for the same

design to suit their needs. It was these two that performed a distinct design

step. A civil engineer took advantage of the object-oriented design philosophy

and a medical software developer utilized a software architecture that had been

used for previous medical software projects.

DI2:Scientific software developers see redesign as a waste of time

that risks breaking the “science” of a program. These scientists said

they added modules to “behemoth” or “monster” programs that were the cul-

mination of years of work by multiple researchers. Some of the interviewees

would only consider redesign if runtime was a critical factor for the software’s

success that was not being met. In general, the scientists did not view design

as an important practice due to either not seeing it as providing an advantage

or their development consisting mostly of expanding existing software projects

that they are reluctant to change [29].

DI3:Object Oriented Design helps produce useful software. The

other three studies [32, 33, 34] dealt with projects that sought to provide mod-

ular functionality. Each of the authors found that the use of a programming

language that allowed them to utilize an Object-Oriented design paradigm was

neccessary for their project to be successful.
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Table 7: Design

Claim NS PE I/S CS
DI1: In general, scientific software designers
do not treat design as a distinct step in the
development process

[29]

DI2: Scientific software developers see re-
design as a waste of time that risks breaking
the “science” of a program

[29]

DI3: Object Oriented Design helps produce
useful software

[32, 33, 34]

4.1.4. Testing

Our survey of the literature identified eighteen studies that contained claims

about the use of testing by scientific software developers. We group the detailed

list of claims into four over-arching claims in the following discussion. Table 8,

summarizes the four claims that are described in detail below.

T1: The effectiveness of the testing practices currently used by

scientific software developers is limited. Ten studies made this claim [19,

35, 36, 37, 3, 16, 38, 39, 40, 41]. One of these studies was a survey, the results

of which are summarized in Figure 1.

Figure 1: Testing Types from Survey
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The authors also asked respondents to give the reasons that they performed

certain types of tests. They received the following responses (in order of the

number of responses):

• Correctness of software;

• Known results or ‘reliable’ programs to compare against exist;

• Easiest or least effort required for these tests’

• User acceptance;

• Not testing software is ‘stupid’;

• Considered to be best practices;

• Familiarity with methods; and

• Avoid costly maintenance later

A few respondents also gave reasons that they did not perform testing: 1) “lack

of management support”, 2) “applications are not large or complex enough to

warrant certain types of testing”, and 3) “it is usually clear whether the software

is working as intended.” Even these people who gave reasons not to perform

testing utilized two or more types of testing [38].

T2: Scientific software developers benefit from using a wide range

of testing practices from software engineering. Twelve studies made this

claim [19, 28, 37, 42, 40, 39, 41, 43, 44, 45, 46, 47]. One method of addressing

the problem in T1 is to use test-driven development to keep bugs such as these

from remaining in their code in addition to doing a regular, automated build in

order to test their code on a regular basis rather than waiting until project is

completed [19, 37, 39, 42]. Additionally, according to the Los Alamos National

Laboratory (LANL) Accelerated Strategic Computing Initiative ASCI Software

Engineering Requirements, regression testing and integration testing are both

essential elements of software project management [28, 37]. In fact, many sci-

entists who successfully test their code are actually using integration testing
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already, but they just think of it as using the scientific method. For example,

every time a model is changed, the scientists treat it as a new experiment and

test it, using the previous results as a control [3, 40].

T3: The testing practices that scientific software developers do

utilize are often executed poorly. When testing is inconsistent, the tests

are not repeatable. A potential pitfall is the possibility that scientists use testing

to show that the theory is correct, rather than using testing to identify where

the software does not work properly. This choice could be due to the code being

tightly coupled to the theory in the scientist’s mind, not existing as an entity

of its own. Testing requires comparison to an oracle. The problem is that when

the oracle and test results do not match, the scientist does not know whether

the problem lies with the theory, the theory’s implementation, the input, or if

the oracle itself is flawed [45, 47]. This last case can occur even when an oracle

is available from measurements of a physical experiment–the measurements can

be incorrect or incomplete. Furthermore, even with a perfect oracle, the fact

that two tests yield the correct answer does not mean that similar, but not the

same, inputs will yield the correct answer [30].

T4: Testing is much more complicated for scientific development

than traditional software development since the correct results are

frequently unknown. An additional difficulty is that testing is much more

complicated for scientific software developers due to the fact that experimental

validation may be impossible. This lack of experimental validation means that

a scientist may not even have an expected answer [3, 16, 48, 23]. Much of

this difficulty largely seems to stem from developers testing their code after

development is mostly finished, forcing the developers to test the software as a

whole instead of breaking it into realistically testable pieces [19, 37]. One study

proposed a practice to test scientific programs without relying on experimental

validation. In particular, they used metamorphic testing, assertion testing, and

generated less rigorous testing oracles using machine learning [48]
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Table 8: Testing

Claim NS PE I/S CS
T1: The effec-
tiveness of the
testing prac-
tices currently
used by scien-
tific software
developers is
limited

[19] [37, 40] [38] [35, 36, 3, 16, 39, 41]

T2: Scientific
software de-
velopers would
benefit from
using a wide
range of test-
ing practices
from software
engineering

[19, 28] [37, 42, 40, 43, 47] [46, 39, 41, 44, 45]

T3: The test-
ing practices
that scientific
software de-
velopers do
utilize are
often executed
poorly.

[45, 47] [30]

T4: Testing
is much more
complicated
for scientific
development
than tradi-
tional software
development
since the cor-
rect results
of a piece of
software are
frequently not
known

[19] [16, 37, 48, 23] [3]
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4.1.5. Verification and Validation

Our survey of the literature identified eleven studies that contained claims

about the use of Verification and Validation (V&V) by scientific software de-

velopers. It is worth nothing that software engineers and scientific software

developers may have slightly different understandings of V&V. Based on the

definitions provided by Babuska and Oden [49], we provide a mapping between

the two domains.

First, software engineers typically understand Validation as the process of

ensuring that the project specification (and overall end product) matches the

project goals or user requirements. In scientific software, this same concept

is described as ensuring that the mathematical model (the equivalent of the

project specification) matches the real world (the equivalent of the project goals

or user requirements).

Second, software engineers typically understand Verification as the process

of ensuring that the implementation of the software matches the project specifi-

cation. In scientific software, this same concept is described as ensuring that the

computational model (the equivalent of the software implementation) matches

the mathematical model (the equivalent of the project spectification).

We group the detailed list of claims into four over-arching claims in the

following discussion. Table 9, summarizes the four claims that are described in

detail below.

VV1: The lack of suitable test oracles or comparable software

makes validating scientific software difficult. There are two primary is-

sues raised by the studies that have made this claim. First, there is a lack of

suitable test oracles to use for scientific software development [3, 50, 39, 23, 46].

There are rarely other pieces of software that are both relevant to the problem

a developer is working on and already have exact answers the developer could

compare against. Because this software rarely exists, scientific software devel-

opers find it hard to compare the results from their software with the results

from other pieces of scientific software [51, 50, 39, 23, 46]. To address this lack
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of external information, some developers have attempted to perform verification

by monitoring variables that change in a known manner, but these variables are

not the ones that scientists are usually concerned with, so the usefulness of this

monitoring is limited [51]. Additionally, the models that are implemented in

scientific software are usually extremely complex, and the value of a model to

scientists does not necessarily depend on how exactly it matches reality [51].

VV2: There are many ways that defects can enter software. First,

the science behind the code could be wrong. Second, the translation from the

scientific model to an implementable algorithm could be wrong. Finally, the

translation from algorithm to code could be wrong [7, 52, 39].

VV3: Scientists frequently suspect that any problems in the results

of their software result from scientific theory. One study found that when

validation testing fails, scientists tend to look more closely at the science rather

than the code. This finding indicates a problem because the lack of attention

allows errors in code to slip through unnoticed [53].

VV4: Experimental validation is frequently impractical because

scientists lack the information they would prefer to use to validate

the software. We found this claim in four studies [3, 2, 54, 55]. There

are two primary reasons given for this claim. First, many scientists believe

that useful validation would have to consist of comparing the results from their

software to the results gained from a physical experiment or observation [3].

As was mentioned in the introduction, the cost or danger of performing these

physical experiments is often the reason why scientists build software models in

the first place, so the physical experiments will not be done before promising

software models have been created. Second, expermental validation is frequently

impractical since it is usually difficult or impossible to know what the correct

result for a piece of software will be until the software is run [2, 54, 55]. In

some cases, scientific software developwers treat validation studies as research

projects or theses in and of themselves due to the challenge in performing them.

In these cases, scientists do not find that it is feasible to fully validate every

piece of their software [55].
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Table 9: Verification and Validation
Claim NS PE I/S CS
VV1: The lack of suitable test
oracles or comparable software
makes validating scientific soft-
ware difficult

[50, 39, 23, 46] [3, 51]

VV2: There are many ways that
defects can enter software

[39] [7, 52]

VV3: Scientists frequently sus-
pect that any problems in the re-
sults of their software result from
scientific theory

[53]

VV4: Experimental validation
is frequently impractical because
scientists lack the information
they would prefer to use to vali-
date the software

[54, 55] [3, 2]

4.1.6. Refactoring

Our survey of the literature identified five studies that contained claims

about the use of refactoring by scientific software developers. We group the

detailed list of claims into two over-arching claims in the following discussion.

Table 10, summarizes the two claims that are described in detail below.

RF1: Refactoring is a useful practice to increase software quality.

Four of the five studies found that refactoring was a useful practice. In particular

software refactoring:

• is a useful practice for improving performance [56, 57],

• has proven to be a highly valuable practice for the bioinformatics do-

main [56],

• is also a powerful practice for maintaining and improving the quality of

code [56, 58], and

• is particularly useful in conjunction with the automated refactoring tools

of IDEs such as Eclipse [19].
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Table 10: Refactoring

Claim NS PE I/S CS
RF1: Refactoring is a useful practice to increase
software quality

[19] [57] [56, 58]

RF2: Refactoring is not always possible [3]

RF2: Refactoring is not always possible. On the other hand, refac-

toring is almost impossible when bit-wise comparison (i.e. a practice in which

a model is run for a shortened period of time and then the variables are com-

pared with other runs of the same length) is used to verify code, because that

practice would only work if changes did not alter the bit values of any of these

variables [3].

4.1.7. Documentation

Our survey of the literature identified nine studies that contained claims

about the use of documentation by scientific software developers. We group the

detailed list of claims into three over-arching claims in the following discussion.

Table 11, summarizes the three claims that are described in detail below.

D1: Documentation is a necessary enabler of software quality. For-

mal documents are important when a project is given to a team that is not the

original development team [25, 59, 8, 23]. In fact, examinations of the ASCI

program at LANL and Lawrence Livermore National Laboratory (LLNL) sug-

gest that documentation is one of the practices that is essential for scientific

software developers to adopt in order to guarantee quality [28, 52]. One benefit

is that documentation enables communication between team members as well

as providing references for papers, grant authoring, and grant reporting. Doc-

umentation is especially vital if scientific software developers wish to use their

earlier software as a basis for developing more advanced software [35, 58, 8].

D2: Documentation is becoming more frequently used. In a more

recent study, Nguyen-Hoan et al. [38] conclude, based on the result of a sur-

vey with 60 respondents, that documentation is more widely produced than is

indicated in these early studies. The responses to their summary are given in
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Figure 2. Nguyen-Hoan et al. also gave the three most common arguments

in favor of producing comments as well as the four most common reasons for

not producing comments. The comments in favor were: 1) “For users of the

software”, 2) “For future maintenance purposes”, and 3) “Documentation is

integral to software.” The arguments against documentation were: 1) “Lim-

ited due to time and effort required”, 2) “Effort not worth it due to small user

base”, 3) “requirements constantly changing or not specified up front,” and 4)

“Software should be or is ‘intuitive’, ‘easy to understand’, or ‘doesn’t need a

full description’ [38].”

Figure 2: Documentation Produced by Developers

D3: Documentation requires a significant investment of work. Not

all of the claims about documentation were positive. The effort required to cre-

ate documentation leads some developers to conclude that scientific software de-

velopers should be careful about how much documentation they create [25, 59].

Furthermore, if the documentation is done to satisfy an external requirement

it may not benefit the project team [25, 59]. However, one study did find an

alternative to performing a separate documentation task and utilized an auto-

matic documentation generator that creates documentation from comments in
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Table 11: Documentation
Claim NS PE I/S CS
D1: Documentation is a necessary
enabler of software quality

[28] [25, 8, 23] [59] [52, 35, 58]

D2: Documentation is becoming
more frequently used

[38]

D3: Documentation requires a signif-
icant investment of work

[25] [59] [35]

the project’s source files [35].

4.1.8. Summary of Development Workflow Claims

In general, the development workflow claims suggest that each practice would

be useful, but there are difficulties that keep scientific software developers from

adopting them in their current forms. Seventeen claims were supported by

multiple types of evidence with seven supported by only one type of evidence.

The most common type of evidence for these claims that were supported by only

one type was Interviews and Surveys, which accounted for three of the claims.

Only four studies had support from every type of study. The claim that had the

most support was T2: ”Scientific software developers would benefit from using a

wide range of testing practices from software engineering.” Notably, every claim

that was supported by a paper that did not provide evidence was also supported

by papers that provided one of the other types of study.

We identified two claims with conflicting evidence. First, one author’s per-

sonal experience was that paired programming is valuable for the development

of complex software while the case study from another author showed that it

is not useful for scientific software development. This issue needs to be further

examined as there are two primary possible explanations. The first is that the

usefulness of paired programming depends on the context of the development

team. The second potential explanation is that the teams involved in the case

study were not well-trained in utilizing paired programming or they lacked the

knowledge to utilize this practice effectively. Additionally, while they viewed

documentation as necessary, two studies made the claim that the amount of
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work required to create documentation means that scientific developers should

be careful about how much documentation they make.

4.2. Infrastructure

The practices in this category all serve to support various aspects of the soft-

ware development lifecycle. Each of practice is addressed in its own section and

the claims are summarized in Tables 12-15. The tables use the same notation

as described in Section 4.1

4.2.1. Issue Tracking

Our survey of the literature identified two studies that contained claims

about the use of Issue Tracking by scientific software developers. We group the

detailed list of claims into two over-arching claims in the following discussion.

Table 12, summarizes the two claims that are described in detail below.

IT1: Issue Tracking greatly eases communication between mem-

bers of a development team. Issue tracking is a useful practice for commu-

nicating information about discovered bugs and needed functionality between

developers. Issue tracking software allows this information to be stored and

communicated instantly between all members of a development team. When

additional remote groups are added to existing development teams, an issue

tracking system is required to formally record bugs and new requirements as

well as to create a trail of the completed activity [19]. Issue-tracking software

also made a list of the ten most important software engineering practices for

scientific software developers to use [25]. There are four primary reasons to use

issue tracking software rather than informally tracking issues:

• Issues can be made visible to the entire team

• The ability to prioritize issues is frequently provided

• Many systems provide the ability to track dependencies between issues;

and

• The history of issues is searchable for future reference [25].
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Table 12: Issue Tracking

Claim NS PE I/S CS
IT1: Issue Tracking greatly eases communication
between members of a development team.

[19] [25]

IT2: Issue Tracking helps insure that no two groups
in a development team are working on the same
problem

[25]

IT2: Issue tracking helps insure that no two groups in a develop-

ment team are working on the same problem. The dependency-tracking

feature of issue tracking software also allows a large deliverable to be broken

into a set of smaller features that it is dependent upon. This set can then be

distributed among various groups so that no two groups are working on the

same feature [25].

4.2.2. Reuse

Our survey of the literature identified eight studies that contained claims

about the use of reuse by scientific software developers. We group the detailed

list of claims into two over-arching claims in the following discussion. Table 13,

summarizes the two claims that are described in detail below.

RU1: Software must be properly designed to be reusable. The pri-

mary reasons to reuse a piece of software are to save time and money as well as to

ensure reliability. The following qualities are needed for a reusable component:

self-contained, able to be combined with other components with minimal side

effects, formal mathematical basis, confidence that the component performs its

defined purpose satisfactorily, understandable, verifiable, encapsulation, simple

interface, flexibility, easily modified, general, programming language indepen-

dent, and portable [8]. The most reused types of artifacts are source code,

scripts, algorithms, and practices [60, 20, 33, 61, 62, 63].

RU2: There are many reasons not to reuse or produce reusable

software. The primary barriers to the reuse of software are that available

software does not meet requirements closely enough and that the software was

difficult to understand or poorly documented. There are also many reasons for
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Table 13: Reuse
Claim NS PE I/S CS
RU1: Software must be properly de-
signed to be reusable

[20] [60, 33, 63, 8] [61] [62]

RU2: There are many reasons not to
reuse or produce reusable software

[60, 64] [61] [62]

not producing reusable code: the additional expense of developing for reuse,

the software release policies of their organizations, concerns over intellectual

property rights, and the absence of a common distribution mechanism [60, 64,

61, 62].

4.2.3. Third-Party Issues

Our survey of the literature identified nine studies that contained claims

about the use of third party software by scientific software developers. We

group the detailed list of claims into four over-arching claims in the following

discussion. Table 14, summarizes the three claims that are described in detail

below.

TPI1: Third party software may cease being supported before

scientific software projects are finished. The long lives of scientific software

projects make it likely that any particular technology will cease being supported

before the project is finished. These long lives have led to many instances of

technologies that promised improved productivity only to cease being supported

and no longer be available [6, 65]. Due to this history of failed usage of third-

party technologies, scientific software developers tend to prefer to either develop

the software they need themselves or to use open-source software.

TPI2: Scientific software developers are not convinced that reusing

existing frameworks will save effort in their development. Some sci-

entific software developers believe it takes more effort to fit their work into a

framework than they would save by using the frameworks [6, 65]. Additionally,

a significant barrier to the use of existing frameworks is that they cannot be

integrated incrementally into an existing code. Scientists tend to mitigate risk
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by having multiple technologies co-existing within a piece of software until one

is chosen, but this practice cannot be followed easily with many frameworks [6].

TPI3: Open-source is especially useful to scientific software devel-

opers. Five studies found that open source had promising features to help

scientific software developers utilize third party products. First, the scien-

tists do not have to devote their effort to developing the software Addition-

ally, if the original developers of the software cease to support it, scientific

software developers have access to the source code and can maintain it them-

selves [2, 20, 66, 22, 67, 65, 62, 63]. In one project, in order to limit the risks,

a developer was assigned to thoroughly test any code before it was integrated

into the main project. The project itself was set up so that commitments to the

sponsor are not endangered by the absence of an expected piece of third party

software [2].

TPI4: Open-sourcing software can be seen as giving up a competi-

tive advantage. One study, however, found that the competitive nature of the

scientific community can lead developers to not produce open-source software

in the first place. The study concluded that this is a problem that can only be

directly addressed by encouraging the community to communicate more closely

and recognize that shared development will allow science to advance at a greater

rate [66].

4.2.4. Version Control

Our survey of the literature identified ten studies that contained claims about

the use of version control by scientific software developers. We group the detailed

list of claims into two over-arching claims in the following discussion. Table 15,

summarizes the two claims that are described in detail below.

VC1: Version control software is necessary for research groups

with more than one developer. This claim was made by eight studies [3,

19, 35, 4, 6, 53, 55, 27]. Version control tools are needed to keep up with changes

to software that can accumulate extremely rapidly. Version control tools allow a

developer to track each new version of a piece of code that is created and identify
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Table 14: Third-Party Issues

Claim NS PE I/S CS
TPI1: Third Party Software may cease
being supported before scientific soft-
ware projects are finished

[65] [6]

TPI2: Scientific software developers
are not convinced that reusing existing
frameworks will save effort in their de-
velopment

[65] [6]

TPI3: Open-source software is espe-
cially useful to scientific software devel-
opers

[66, 22, 63] [2, 20, 67, 65, 62]

TPI4: Open-sourcing can be seen as
giving up competitive advantage

[66]

changes between versions. Versions of software that are used to publish results,

support major decisions, or undergo extreme testing are the most important

to track [53]. In addition, the developer needs to maintain a complete copy

of any software used to produce important results. An example of why the

need to keep a copy of the software is important is a case where a researcher

tried to reproduce results that she had produced the previous year. Because the

researcher did not have access to the old versions of the data she needed, she had

to spend a considerable amount of time reproducing the input data. In one case,

even though she had the data, the results were significantly different from the

previous run. In this case, the executable for the first test had been built using

different compiler options [53]. In addition to utilizing version control systems,

it is useful to have a formal process to approve code that is to be checked into

the repository. This process would ensure that a piece of code passes all relevant

test cases instead of relying on individual developers to perform these tests [55].

VC2: Distributed Version Control is particularly useful for scien-

tific software development. There are two major types of version control

systems: centralized and distributed. In a centralized system, a single server

stores the master copy of the entire project; meaning that if the server goes down

or the network becomes unavailable, no one can submit work on the project.

Also, if the server’s data is lost, the entire project is lost as well. An alternative
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Table 15: Version Control
Claim NS PE I/S CS
VC1: Version control software is neces-
sary for research groups with more than
one developer

[19] [4, 53] [6, 55] [3, 35, 27]

VC2: Distributed Version Control is
particularly useful for scientific software
development

[19] [35, 3]

is to use a distributed version control system instead. In this implementation,

each user has a full copy of the entire project on their machine which is updated

to match other copies as connections to the other nodes in the network are

available. The primary problem with distributed version control systems is that

they are complicated to manage, requiring a strategy for sharing modifications

and synchronizing local copies [68]. One instance of distributed version control

is “The Abinit forge”, a custom version control system built on Bazaar–a dis-

tributed version control system and an ssh-server. Each Abinit developer has

a Bazaar repository that stores their branches of their software, providing fast

data access and somewhat optimized usage of disk space. A daily script makes

all contributions to a project available through a password-protected website

which allows the developer to share his work with others and organize collabo-

rative developments involving remote workplaces [35]. Other tools in common

use are: Revision Control System and Concurrent Version System, the latter of

which can be utilized from within the Eclipse IDE to ease the overhead required

by adopting the tool [3, 19].

4.2.5. Summary of Infrastructure Claims

In general, the infrastructure claims suggest that each of the practices cov-

ered under each practice would be useful, but there are difficulties that keep sci-

entific software developers from adopting them in their current forms. Despite

this positivity, the adoption of these practices is not particularly wide-spread

in scientific software development. This lack of adoption suggests that this

area needs the support of software engineers seeking to aid scientific software
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development.

The claims related to infrastructure have not been investigated as deeply as

those related to the development workflow. In fact, there were only ten major

infrastructure claims. Eight of the claims were supported by multiple types of

evidence, while two were supported by only one type of evidence. Both of these

were supported by Personal Experience Three claims had support from every

type of study. Two claims tied for having the highest level of support: TPI3:

”Open-source software is especially useful to scientific software developers” and

VC1: ”Version control software is necessary for research groups with more than

one developer.” Once again, every claim that was supported by a paper that

did not provide evidence was also supported by papers that provided one of the

other types of study. It is interesting to note that all evidence indicated that

the infrastructure practices are effective. Even so, the general lack of strong

support suggests that the entire area of infrastructure support for scientific

software development is an open research area for software engineers seeking to

aid scientific software developers in their pursuit of knowledge.

5. Conclusion

This paper looked at the literature on development in computational science

from both the scientific software and software engineering domains in order to

answer the question of what claims are made about the usage of software en-

gineering practices by scientific software developers. In order to answer this

question, the paper looked at the claims made by both scientific software de-

velopers and software engineers. The claims show that scientific software de-

velopers believe that software engineering practices could increase their ability

to develop quality software and software engineers agree that scientific software

developers need adopting software engineering practices would allow them to

produce higher quality software. In particular, every piece of evidence from

these papers indicated that the infrastructure practices are effective when they

are used. Despite this, there was a general lack of strong supporting evidence,
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which suggests that the entire area of infrastructure support for scientific soft-

ware development is an important research area for software engineers seeking

to assist scientific software developers.

Even so, these claims show that there has been much work done in this

area already. Specific practices that have been adopted strongly by scientific

software developers are Issue Tracking and Version Control. The authors who

addressed these practices also saw them as two of the most important practices.

Interestingly, scientific software developers have, to a large extent, unconciously

adopted a software engineering development practice. While many scientific

software developers do not know how to formally implement the Agile develop-

ment approach, their normal development methodology closly approximates it.

The Agile approach fits well with their inability to know all of the requirements

of the physical systems their software is attempting to model. The iterative

nature of the Agile approach also allows the software models to evolve more

easily than a traditional waterfall model would.

The practices that scientific software developers view as important, but have

not widely adopted, are Verification and Validation and Testing. While they

see these practices as extremely useful and important, the current status of each

of them is extremely difficult in the scientific software domain. In particular,

it is difficult to validate scientific software by comparing it to real-world data

because the scientific software is attempting to investigate areas for which real-

world experiments are not feasible to perform. Additionally, scientific software

developers do not know how to apply many of the testing practices that have

been developed in traditional software engineering to their own software devel-

opment. Because of this lack of knowledge, software engineers need to work

with scientific software developers to train the scientific software developers in

testing and verification and validation practices. Software engineers also need

to tailor the existing practices to better fit the needs of the scientific software

developers.
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