
March/April 2009	 Copublished by the IEEE CS and the AIP	 1521-9615/09/$25.00 © 2009 IEEE� 7

Editor: Rubin Landau, rubin@physics.oregonstate.edu

N e w s

C omputer codes are becom-
ing increasingly important
as researchers study complex

scientific problems. These codes, to
which graduate students and postdocs
devote multiple people years, allow for
scientific exploration that wasn’t pos-
sible in earlier times. However, much
of the effort spent developing code is
wasted because good software engi-
neering practices aren’t followed. As
difficult as it might be for some read-
ers to believe, software engineers have
spent considerable effort researching
the most effective methods for plan-
ning, writing, testing, and document-
ing codes to allow them to be easier to
debug and have a long, useful life.

In recognition of the general lack
of exposure scientists have to software
engineering and vice versa, a workshop
was held during the 2008 International
Conference on Software Engineering
in Leipzig, Germany. The workshop’s
goal was to bring together researchers
and practitioners from the software
engineering and computational science
and engineering (CS&E) communities
to build a common understanding of
the issues involved in the complex pro-
cess of CS&E software development
and identify common themes to pur-
sue in future research.1 Because cross-
pollination between the communities
is limited at best, there’s a lack of ef-
fective software engineering tech-
niques that specifically support CS&E
software development. Software engi-
neering researchers have developed ef-
fective techniques to support software

development in other domains, so
it’s reasonable to determine whether
the software engineering community
can have similar success in develop-
ing techniques specifically for CS&E
software. This workshop evolved
from a series of workshops focused on
software engineering for high-perfor-
mance computing,2–5 with the goal of
broadening the scope to include all
types of CS&E software.

In addition to the need for cross-
pollination between the two com-
munities, the conference organizers
and attendees also believed that the
following differences between the
development of CS&E software and
other types of software needed to be
explored in more depth:

The software must often implement •	
sophisticated mathematical models
and might be developed based on an
executable specification, such as a se-
ries of Matlab equations.
The software often explores un-•	
known science, which makes it dif-
ficult or impossible to determine
a concrete set of requirements a
priori.
The processes used for CS&E soft-•	
ware development might differ sig-
nificantly from traditional software
development processes.
Execution of CS&E software of-•	
ten requires powerful comput-
ing resources. Existing solutions
that provide more computational
power—clusters, supercomputers,
grids—can be difficult to use.

Successful CS&E software often •	
revolves around its optimization to
the machine architecture so that
computations can be completed in
a reasonable amount of time. The
effort and resources involved in
such optimization might exceed
that required for the algorithm’s
initial development.

With these characteristics as a
backdrop to the conversation, the
workshop was convened with 14 at-
tendees. Because the workshop was
held during a software engineering
conference, most of the attendees
came from the software engineer-
ing community interspersed with a
few representatives from the CS&E
community. The workshop’s pa-
pers and presentations are available
at www.cs.ua.edu/~SECSE08. Four
main themes emerged from the lively
group discussions.

CS&E Software’s
Unique Characteristics
The first theme that arose during the
discussions was whether CS&E soft-
ware development really is different
from other types of software develop-
ment as we had assumed. An argument
against the need for research into how
to apply software engineering to de-
veloping CS&E software has been
that traditional software engineer-
ing techniques would work for CS&E
software if developers were properly
trained. Partially in response to this
argument, the workshop participants

First International Workshop
on Software Engineering for
Computational Science & Engineering
By Jeffrey C. Carver

N e w s

8� Computing in Science & Engineering

developed a list of characteristics re-
lated to the developers, the develop-
ment environment, and the users that
differentiates CS&E software from
other software.

In most cases, CS&E software de-
velopers have a scientific or engineer-
ing background and haven’t received
formal software engineering train-
ing. Most learn to develop software
out of necessity rather than desire.
As a result, typical CS&E developers
view themselves primarily as scien-
tists or engineers rather than software
developers.

Within the CS&E environment,
developers have to create unique types
of software for a range of projects,
from long-lived projects that exist for
decades to those that are thrown away
after one use, referred to as “Kleenex
codes.” Thus, each project imposes
different constraints on development.
Further, the goal of many CS&E
software projects is to discover new
science by exploring complex and ill-
understood domains. These projects
tend to involve a large quantity of nu-
merical calculations, which will affect
developers’ choice of programming
language. CS&E projects often sup-

port the search for new scientific re-
sults, so the requirements must evolve
as the domain is better understood,
in contrast to other development en-
vironments in which requirements
evolve as a result of changing user
needs or environments.

Many CS&E projects have to sup-
port a diverse user community, which
can include casual users who are only
interested in high-level results to
power users who might go as far as
to modify the code. In most cases,
CS&E software has relatively simple
user interfaces, although its execution
is typically input driven. Therefore,
developers have to ensure that user in-
put doesn’t create concurrency prob-
lems or deadlocks.

Appropriate Context
Dimensions
The workshop attendees had very di-
verse backgrounds and experiences
with many types of CS&E software.
It quickly became clear that the po-
sitions each individual took during
a discussion were colored by these
experiences. Therefore, the group
decided to enumerate as many of
these dimensions as possible in the

hope that a better understanding of
a person’s context would facilitate
better discussion. In addition, these
dimensions affect the decisions made
during software planning and devel-
opment, as well as the quality goals
chosen for the projects. Table 1 con-
tains a list of these dimensions along
with their potential values.

Major Quality Goals
The definition of quality varied great-
ly among the workshop attendees. It
was obvious that performance was an
important goal for many CS&E proj-
ects, especially those that were target-
ed for execution on a supercomputer.
However, other traditional software
quality goals were less universally
accepted or consistently defined. For
example, the quality goal of correctness
might seem like it would be univer-
sally relevant, but it wasn’t. Different
domains have different definitions—
one was an answer’s trustworthiness.
In some domains, it’s better for the
software to crash or output no data
rather than provide incorrect output.
Another definition of correctness was
software transparency, which lets de-
velopers or scientists make their own

Table 1. Context dimensions and potential values.

Dimension Potential values

Use of high-performance computing machine Yes / no

Type of data operated on Floating point / strings / other

Focus on computation or throughput Computation / throughput / both

Scientific domain Weather forecasting / astrophysics / and so on

Domain understanding High / medium / low / none

Team size Number of team members

Purpose Simulation / orchestration / exploratory / commercial innovation / other

Type of organization Academic / corporate / government

Code distribution Open source / commercial / other

Longevity Number of years

Variation in end-user community Large amount / small amount / no variation

Size Number of lines of code

Processing types Batch or interactive

Code evolution Evolving / static

Level of fault tolerance Very high / high / medium / low / none

Relationship between developers and users Same group of people / some overlap / no overlap

March/April 2009� 9

judgments about the output the soft-
ware produces.

Another quality characteristic that
was important in some cases was test-
ability, although it wasn’t always clear
how to define the term. Sometimes
software is tested by human inspec-
tion of a visualization result. In other
cases, it’s tested by performing san-
ity checks on known results—that
is, using small examples with known
results to increase confidence that the
software will work on larger examples
with unknown results.
Portability and maintainability are

also important characteristics for
some CS&E projects. For instance, if
the software is intended to be produc-
tive for a long time, then such goals
are important. The project will suffer
if developers can’t modify the software
to keep up with advances in scientific
knowledge or computer hardware.

Finally, some of the attendees be-
lieved that reusability should become a
more prominent goal. Currently, this
goal isn’t important for most CS&E
projects. There are various, valid, and
not-so-valid reasons why.

Crossing the
Communication Chasm
Software engineering researchers
and CS&E developers must address
the large communication chasm that
exists between them. Each group is

partially responsible for the lack of
communication and therefore can
be part of the solution. Because most
of the workshop participants came
from the software engineering com-
munity, the first issue the group ad-

dressed was how software engineers
could better reach out to computa-
tional scientists and engineers. The
main suggestion was to conduct sim-
ilar workshops at conferences that
specifically target CS&E researchers

Web Trends

For a brief look at current events, including program
announcements and news items related to science and

engineering, check out the following Web sites:

Project helps prepare visually impaired children for •	
computer science programs (www.nsf.gov/news/news
_summ.jsp?cntn_id=112729&govDel=USNSF_51). The
US National Science Foundation (NSF) has funded an ini-
tiative at the Rochester Institute of Technology that aims
to increase the number of visually impaired students
pursuing computer science degrees.
Researchers store information at atom’s nucleus (www. •	
nsf.gov/news/news_summ.jsp?cntn_id=112538&gov

Del=USNSF_51). Scientists from Princeton University,
Oxford University, and the Lawrence Berkeley National
Laboratory describe their process of isolating a quantum
bit while preserving its quantum information.
CISE Pathways to Revitalized Undergraduate Computing •	
Education (CPATH; www.nsf.gov/pubs/2009/nsf09528/
nsf09528.html?govDel=USNSF_25). The NSF is soliciting
proposals for developing student programs to further
student competency in computational thinking. Dead-
line is 28 April 2009.
Science & Engineering Visualization Challenge (http://•	
www.nsf.gov/news/special_reports/scivis/index.
jsp?id=challenge). The competition focuses on illustra-
tions in science, engineering, and technology for educa-
tion and journalistic purposes.

OPTO-MECHANICAL SIMULATION PHYSICIST
LIGO at Caltech

Pasadena, CA

Laser Interferometer Gravitational-Wave Observatory (LIGO) - The candi-
date will develop code for the simulation of interferometric gravitational
wave detectors under the direction of a senior LIGO scientist. The can-
didate will begin by working on existing models which have been under
development for some years and will work to extend the models to simu-
late a full Advanced LIGO interferometer. In addition, the candidate will
spend time working at the sites using the results of simulations to facilitate
the commissioning of the Advanced LIGO Detectors. This is 3-year term,
renewable position.

Masters degree in a related discipline with at least 8 years of relevant ex-
perience required. Good programming skills using object oriented design,
experience in the simulation of complex opto-mechanical systems or other
equally complex scientific experiments and a strong knowledge of phys-
ics.

The candidate must have an excellent working knowledge of C++ and will
be required to supply samples of their code as part of the application pro-
cess. In addition to strong experience in the simulation of complex sys-
tems, the candidate must have a good background in physics including:
1) basis optics including optical beam propagation, 2) mechanics, and 3)
heat transfer.

To apply and/or view a full job description go to:
http://tinyurl.com/dx5lju

We are proud to be an EOE/AA employer, M/F/D/V.

N e w s

10� Computing in Science & Engineering

and developers. Another suggestion
was to document instances in which
software engineering researchers
successfully addressed issues that are
important to the CS&E community.
These success stories will provide
strong support for the benefits that
can be gained from collaboration.

The group also noted that mem-
bers of both communities must take
steps outside of their comfort zones
and try new things. In addition, they
must eliminate their mutual distrust
of one another and acknowledge the
strengths they each provide. Further,
software engineering researchers
must understand that CS&E devel-
opers don’t want their projects to be-
come software engineering research

projects. Software engineers must
change the perception that all they
have are solutions looking for prob-
lems. Rather, they need to listen to
and learn from scientists’ experiences
prior to proposing solutions. Finally,
when they find something that works,
scientists and engineers should com-
municate this information to others
who could benefit from it.

B y bringing together a varied
group of researchers and devel-

opers from the software engineer-
ing and CS&E communities, the
workshop provided a forum for in-
teresting discussions and knowledge
exchange. The workshop attendees

were enthusiastic about participat-
ing in a similar follow-up workshop
at the 2009 International Confer-
ence on Software Engineering in
Vancouver. One deficiency in the
workshop was the underrepresenta-
tion by the CS&E community. To
broaden its participation, I encour-
age your participation in this year’s
workshop, which will take place on
23 May 2009. More details can be
found on the workshop’s Web page
(www.cs.ua.edu/~SECSE09) or by
emailing me at carver@cs.ua.edu.�

Acknowledgments
I thank the workshop participants
whose comments and insights provided
the material for this article. I also thank

Observatoire Landau

Computational Scientific Thinking

By Rubin Landau, Department Editor

It’s hard not to take notice when Carne-
gie Mellon University’s computer science

department—one of the country’s premier
CS departments—and Microsoft Re-
search—the premier software company—
start up an institute with the catchy title

of Center for Computational Thinking (CCT; www.cs.cmu.
edu/~CompThink/). With Jeanette Wing’s paper on the sub-
ject (www.cs.cmu.edu/afs/cs/usr/wing/www/publications/
Wing06.pdf) seemingly referenced by every third person in
the computational science community, and Purdue Univer-
sity sponsoring a series of workshops (SECANT: Science Edu-
cation in Computational Thinking; http://secant.cs.purdue.
edu/) in which even physicists and biologists had views
to contribute, I couldn’t help but wonder if there might
be something more here than just a catchy phrase (not to
discount the importance of catchy phrases helping premier
departments find success with grant proposals). I mean, isn’t
computational thinking what all of us reading this magazine
have been doing for a living for years? Granted, after spend-
ing days debugging and formatting code, we might feel like
we do more computation than thinking, but in the end, we
do like to think that we are truly Homo sapiens.

According to the CCT, “Computational thinking is a way
of solving problems, designing systems, and understand-
ing human behavior that draws on concepts fundamental

to computer science. To flourish in today’s world, compu-
tational thinking has to be a fundamental part of the way
people think and understand the world. Computational
thinking means creating and making use of different levels
of abstraction, to understand and solve problems more
effectively; thinking algorithmically and with the ability to
apply mathematical concepts such as induction to develop
more efficient, fair, and secure solutions; understanding
the consequences of scale, not only for reasons of efficien-
cy but also for economic and social reasons.”

 Well, as someone who has been teaching computational
physics and computational science for nearly two decades,
I can’t say that I disagree with these views, but I also can’t
say that they encapsulate my views of computational
thinking. Of course, as a basic researcher and educator, my
values, goals, prejudices, and measures of success differ
from those of a computer scientist and so might be more
accurately described as “computational scientific thinking.”
In fact, as a consequence of contributing to the Microsoft
Research e-Science Workshop (http://research.microsoft.
com/en-us/events/escience2008/) and planning an honors
seminar on the subject, I’ve gathered some thoughts and
present them here in the hopes of putting more science
into computational thinking. I would say

computational scientific thinking (CST) is using simu-•	
lation and data processing to augment the scientific
method’s search for the truth and for the realities hidden
within data and revealed by abstractions.
concretely, as Figure A shows, CST is providing a coher-•	
ent view of a natural system as the integration of data,
theory, algorithmic model, and software implementation.

March/April 2009� 11

Judith Segal for her comments on an
early draft of this article.

References
J.C. Carver, “SE-CSE 2008: The First Interna-1.	
tional Workshop on Software Engineering for
Computational Science and Engineering,”
Proc. 30th Int’l Conf. Software Eng. Companion
Volume, ACM Press, 2008, pp. 1071–1072.

J. Carver, “Third International Workshop on 2.	
Software Engineering for High Performance
Computing (HPC) Applications,” Proc. 29th
Int’l Conf. Software Eng. Companion Volume,
IEEE CS Press, 2007, p. 147.

J.C. Carver, “Post-Workshop Report for the 3.	
Third International Workshop on Software
Engineering for High Performance Comput-
ing Applications (SE-HPC07),” ACM Software
Eng. Notes, vol. 11, 2007, pp. 38–43.

P. Johnson, “Workshop on Software Engi-4.	
neering for High Performance Computing
System (HPCS) Applications,” Proc. 26th Int’l

Conf. Software Eng., IEEE CS Press, 2004, pp.
772–772.

P.M. Johnson, “Second International Work-5.	
shop on Software Engineering for High Per-
formance Computing System Applications,”
Proc. 27th Int’l Conf. Software Eng. (ICSE),
ACM Press, 2005, pp. 683–683.

Jeffrey C. Carver is an assistant professor in

the Department of Computer Science at the

University of Alabama. His research interests

include software engineering for computa-

tional science and engineering, empirical

software engineering, and software process

improvement. Carver has a PhD in comput-

er science from the University of Maryland.

He is a member of the IEEE Computer Soci-

ety and the ACM. Contact him at carver@

cs.ua.edu.

pragmatically, CST is learning the multiple disciplines •	
needed to solve a problem and understanding them
more deeply and more efficiently by understanding
them in context. This entails learning the human and
computer languages of multiple disciplines, respect-
ing the values of these disciplines, and trading in
good faith.
CST practitioners gain control of their working en-•	
vironments by having the confidence to look at and
understand the insides of computing black boxes and
by having the courage to be nonexperts on some
parts of a problem.
computational scientific thinkers understand that it’s •	
more important to have the correct answer than the
fastest answer and are willing to take on the hard work
needed to obtain the correct answer.
computational scientific thinkers recognize that there •	
might be uncertainties and indeterminacies in comput-
ing the correct answer and that some mathematical col-
leagues might not think that a computed answer is an
answer at all, yet the thinkers understand that moving
beyond analytic solutions to approximate ones is often
more realistic and accurate than elegant exact solutions.
CST is the appeal of pursuing new science in com-•	
plexity rather than developing different ways to view
the same simple systems. It includes new subjects in
science curricula, such as continuous media, nonlinear
phenomena, space–time correlations, integral equa-
tions, wavelets, principle component analysis, (signal
processing beyond Fourier), many-body theories, mo-
lecular dynamics, and imbued visualizations, for which
computation is essential.

in educational practice, CST might mean reversing •	
the egalitarian trend of trying to make hard subjects
more accessible by deemphasizing the importance of
mathematics and abstractions. CST requires additional
abstractions to understand and contribute to subjects
such things as multidimensional representations of
physical quantities and of data, and parallel and cloud
computing languages.

I would appreciate hearing your thoughts on the
subject—for future columns and to help improve my
planned seminar. If you’re interested in starting an Insti-
tute for Scientific Computational Thinking (something
the US National Science Foundation’s CISE Pathways to
Revitalized Undergraduate Computing Education program
might support), please let me know at rubin@science.
oregonstate.edu.

Problem

Science

Model

Discrete
continuous

Method

Numeric
symbolic

Implementation

Java, f90, C

Assessment

Visualization
exploration

Figure A. Computational scientific thinking provides a
coherent view of a natural system.

Contact CiSE
Web sites: www.computer.org/cise/
or http://cise.aip.org

Writers: Visit our “Write for Us” section at
www.computer.org/cise/author.htm.

Letters to the Editors: Email Jennifer
Gardelle, lead editor, jgardelle@computer.
org. Provide an email address or daytime
phone number.

Subscribe: Visit https://www.aip.org/forms/
journal_catalog/order_form_fs.html or www.
computer.org/subscribe/.

Subscription Change of Address: For the
IEEE/CS, email address.change@ieee.org.
Specify CiSE. For the AIP, email subs@aip.org.

Missing or Damaged Copies: For CS sub-
scribers, email help@computer.org. For AIP
subscribers, email claims@aip.org.

Article Reprints: Email cise@computer.org
or fax +1 714 821 4010.

Reprint Permission: Email William Hagen,
Copyrights & Trademarks Manager, at
copyrights@ieee.org.

