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S o f t w a r e 
e n g i n e e r i n g

Held during the 2009 International Conference on Software Engineering, this workshop 
provided a venue for software engineering researchers to interact with CSE researchers and 
practitioners and further strengthen the evolving dialogue between them. This report offers 
a brief overview of the workshop’s position papers and summarizes the breakout group 
discussions.

Report: The Second International 
Workshop on Software  
Engineering for CSE

A lthough CSE software plays an im-
portant role in society, the software 
engineering community has histori-
cally given little attention to study-

ing CSE’s state-of-the-practice. In recent years, 
however, software engineering researchers and 
CSE software developers have begun creating 
a community for the mutual exchange of ideas 
and knowledge. Early support of this effort came 
from the International Conference on Software 
Engineering,1 which held its first workshop on 
software engineering for high-performance com-
puting in 2004; in the past two years, that work-
shop’s focus expanded to include all types of CSE 
software. The motive for this expansion was the 
realization that, while supercomputer use entails 
unique challenges, most CSE software shares 
some common characteristics and issues, whether 
it’s developed for use on a supercomputer or on a 
PC. Broadening the workshop to include all types 
of CSE software therefore made sense. 

The benefits of a strong dialog between soft-
ware engineering and CSE are clearly mutual. 

Because CSE software projects have unique char-
acteristics, software engineers will have much to 
gain from and offer to the CSE community once 
key distinctions2–4 between the two fields are 
properly understood:

CSE projects often explore unknown sci-•	
ence and thus many of the requirements  
(beyond the laws of nature) can’t be known a 
priori and must emerge throughout the devel-
opment process.
Because CSE projects often investigate new •	
scientific findings, the software’s expected out-
put is sometimes unknown, making it difficult 
or impossible to define test oracles. As a result, 
traditional software testing approaches are 
problematic.
A CSE project’s life cycle is likely to differ •	
from traditional models. For example, in one 
workflow (“lone researcher”), a single scien-
tist develops software to test a hypothesis and 
then discards the software. As another example, 
some projects can last 10 years or more and are 
in constant development throughout.
CSE software sometimes requires extensive com-•	
puting resources in terms of processing power for 
simulations or data throughput for data-intensive 
applications. These resource needs can require 
the development of complex software. 
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Many CSE software developers are experts—•	
often with a PhD in the underlying scientific 
or engineering domain—but have little for-
mal training in software engineering tools and 
techniques. It’s not uncommon for a single sci-
entist to take on the role of software developer 
and then rely solely on the Internet to acquire 
relevant software development knowledge. 

In this year’s workshop, our focus was on dis-
cussing and understanding the development of 
two important types of CSE software. The first 
type is scientific or engineering software applica-
tions that aim to solve or provide insight into a 
specific scientific or engineering problem; exam-
ples include computational simulations and com-
plex bioinformatics algorithms. The second type 
is software to support scientific or engineering 
applications, such as data management systems, 
workflow management systems, and data visual-
ization systems. 

Summary of Position Papers
The following summarizes the 2009 workshop’s 
eight position papers. The full papers are available 
in the IEEExplore Digital Library (included in 
the ICSE proceedings); the workshop Web page 
(www.cs.ua.edu/~SECSE09) offers links to the 
proceedings and the presentation slides.

In “Testing for Trustworthiness in Scientific 
Software,” Daniel Hook and Diane Kelly describe 
two problems that scientists face when testing 
their software: the lack of a test oracle and the 
many tests required to validate the code. Hook 
and Kelly maintain that, rather than fully test-
ing the code for correctness, developers should 
instead test their code for trustworthiness using 
methods such as mutation testing.

In “Comparing Bioinformatics Software De-
velopment by Computer Scientists and Biologists: 
An Exploratory Study,” Parmit Chilana, Carole 
Palmer, and Andrew Ko examined how bioinfor-
matics software developers—including computer 
scientists and biologists—seek out the informa-
tion they need to develop their software. To dis-
cover this, they interviewed developers and found 
that a developer’s colleagues are an important 
source of information. Their paper also discusses 
how developers could employ better organization 
to find important information more easily. 

In “Some Challenges Facing Software Engi-
neers Developing Software for Scientists,” Judith 
Segal describes two particular challenges that 
software engineers face when developing scientific 
software. First, scientists use their own software 

development models, which don’t resemble tradi-
tional software engineering models. Further, the 
success of their models is affected by many (often 
unidentified) context variables. Second, commu-
nity software can greatly impact some branches 
of science, yet developing this shared software en-
tails many challenges that can derail its success.

In “Refactoring and the Evolution of Fortran,” 
Jeffrey Overbey, Stas Negara, and Ralph Johnson 
describe how, as languages like Fortran evolve, 
they become more complex and often contain 
older and rarely used features. This complexity 
makes it difficult to use the language and to con-
struct tools. However, tools that perform refac-
toring can eliminate complexity and make tool 
development easier. For example, removing global 
variables using the Photran tool will make a code 
compatible with Adaptive MPI, which performs 
load balancing. 

In “An Empirical Characterization of Scien-
tific Software Development Projects According 
to the Boehm and Turner Model: A Progress 
Report,” Carlton Crabtree, A. Güne, Koru, 
Carolyn Seaman, and Hakan Erdogmus describe 
their planned research approach to identify char-
acteristics of scientific software projects. They’re 
conducting this research through a series of in-
terviews with scientific software project teams. 
Their goal in identifying these characteristics is 
to help developers decide between using an agile 
development method or a plan-driven develop-
ment method.

In “Integration Strategies for Computational 
Science & Engineering Software,” Roscoe A. Bar-
tlett explores the challenges developers face when 
they create CSE software by integrating software 
written by different expert groups. The CSE soft-
ware domain poses some challenges for achieving 
this integration. In addition to exploring many  
of these challenges, Bartlett describes some inte-
gration approaches that have proven useful on the 
Trilinos project.

In “Barely Sufficient Software Engineering:  
10 Practices to Improve Your CSE Software,” 
Michael Heroux and James Willenbring note that 
CSE software developers are primarily focused on 
research or on advancing algorithms or modeling 
capability, rather than on formal software engi-
neering. Because CSE developers lack training, 
resources, and time, they often fail to adopt ap-
propriate software engineering techniques. Based 
on lessons learned from the Trilinos project, this 
paper presents 10 basic, lightweight practices that 
CSE developers can adopt to improve their soft-
ware development process. 
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In “Injecting Software Architectural Con-
straints into Legacy Scientific Applications,” 
David Woollard, Chris Mattmann, and Nenad 
Medvidovic note that, while using a formalized 
software architecture helps with maintenance, 
reuse, and evolution, many legacy CSE codes are 
written in languages—such as Fortran and C— 
that don’t support architectural concepts. Such 
codes are therefore challenging to integrate into 
systems that use a formal architecture. To address 
this situation, they propose turning these legacy 
codes into components wrapped in architecturally 
aware interfaces. Developers can easily integrate 
these wrapped components into a system that uses 
architectural constructs, while also maintaining 
the legacy implementation’s performance gains.

In “Reusability of FEM Software: A Program 
Family Approach,” Wen Yu and Spencer Smith fo-
cus on program families, which are sets of related 
programs that share a common underlying func-
tionality and code base, and are tailored for specific 
applications. As Yu and Smith describe, the program 
family approach is especially helpful for usability and 
maintenance. They also describe how this approach 
can benefit finite element method software and pro-
vide a proof of concept using a simple FEM program 
family for solving beam analysis problems.

In “Developing Scientific Applications Us-
ing Generative Programming,” Ritu Arora, Pu-
rushotham Bangalore, and Marjan Mernik note 
that developers can use checkpointing to make CSE 
software resilient to failure when using large data-
sets and multiple resources. The problem, however, 
is that many codes don’t have a built-in checkpoint-
ing feature. They describe how developers can use 
generative programming to reengineer an existing 
application in a nonintrusive manner. Using genera-
tive programming, developers can modify a code to 
include a checkpointing feature without changing 
the original code’s functionality or performance.

In “How Do Scientists Develop and Use Scien-
tific Software?” Jo Erskine Hannay, Hans Petter 
Langtangen, Carolyn MacLeod, Dietmar Pfahl, 
Janice Singer, and Greg Wilson describe the results 
of an online survey about how scientists develop and 
use software. Their survey produced almost 2,000 
responses; the results indicate that scientists: consult 
peers for knowledge about software development 
and use; are more likely to use desktop and cluster 
machines than supercomputers; rely on software 
with a large user base; and believe testing is impor-
tant but typically lack sufficient knowledge about it.

Finally, in “Preparing Scientists for Scalable Soft-
ware Development,” Valerie Maxville describes Aus-
tralia’s IVEC education program for eResearchers. 

CSE projects require developers who are highly 
competent in both the CSE domain and in software 
development. By observing multiple CSE projects, 
iVEC team members can identify which formal 
software engineering techniques will be useful in 
the CSE domain. iVEC currently trains CSE de-
velopers in the use of the message-passing interface 
(MPI) and is expanding its program to include ad-
ditional lightweight and high-return techniques to 
improve CSE software development. 

Breakout Groups
During the paper presentations, many interest-
ing questions arose. To address them, we formed 
breakout groups around three key topics. Work-
shop attendees selected a group to join according 
to the question they wanted to discuss.

Facilitating Communication
The first question was: How can scientists be effec-
tively involved in software development and training? 
One reason that CSE developers underutilize 
software engineering techniques is because of the 
communication difficulties between the software 
engineering and CSE communities.2 

This breakout group focused on identifying meth-
ods to facilitate the flow of good ideas between the two 
communities. The group made several observations: 

Software engineering ideas and concepts must •	
be translated into terms that CSE developers 
are familiar with and will understand.
We need people who understand both the soft-•	
ware engineering and the CSE domain.
Software engineers can’t make changes from the •	
outside; the CSE team must know and trust them. 
Encouraging the use of software engineering •	
for lone researchers (or small teams) is different 
than for large development teams.
CSE teams won’t be motivated to adapt soft-•	
ware engineering until they encounter a vexing 
problem. 
The extreme programming practice of pair •	
programming5 is a possible way to bring soft-
ware engineering to CSE projects.

Based on these observations, it’s clear that there’s 
still a communication chasm between software 
engineering researchers and the scientists who are 
developing software. To make advances in CSE, 
we must continue the effort to reduce this chasm.

Measuring Productivity
The second question was: How can software en-
gineering researchers measure their impact on the 
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productivity of scientists? This question is key; both 
scientists and funding agencies care about scientific 
productivity, not software development productiv-
ity. Given this, it’s important to determine how 
best to measure scientific productivity. First, how-
ever, we must determine how to define both pro-
ductivity and the measurement time scale.

Software productivity metrics—such as lines 
of code per day—don’t offer insight into scien-
tific productivity. Typically, scientific productiv-
ity is measured by publications, citations, impact 
factors, and so on. Of course, such metrics take a 
long time to gather. Furthermore, it’s not obvious 
that these metrics are actually good measures of 
scientific productivity (see Carlo Ghezzi’s ICSE 
2009 keynote; http://groups.google.com/group/
keynote-discussion-carlo-ghezzi-icse09/?pli=1). 
In terms of measurement time scale, it’s impor-
tant to obtain concrete, valid results within a short 
timeframe. Funding agencies typically want to see 
documented results within six to 12 months. Also, 
when testing a new approach on a project, CSE de-
velopers must see some positive impact quickly to 
encourage them to continue using the approach. 

The breakout group suggested three potentially 
fruitful ideas:

Indirect self-assessment•	 . Ask developers to iden-
tify tasks that they wish they could do but can’t. 
Have the developers make such a list before 
introducing the new approach, three months 
later, and three months after that.
Hype•	 . If a new approach is effective, developers 
will recommend it to others, but it’s not clear 
exactly how to measure this information. 
Performance on an exam•	 . Measure performance 
on a suite of common programming tasks before 
and after training. However, this measure doesn’t 
directly tie to scientific productivity for the same 
reason that using “best practices” doesn’t neces-
sarily improve scientific productivity. 

To achieve a high level of relevance, it’s impera-
tive that software engineering researchers iden-
tify valid and reasonable methods for measuring 
scientific productivity.

Developing Community Software 
The third question was: What are the software devel-
opment and use problems within scientific communities 
(as opposed to with individual researchers)? Software 
developed by a community of developers or users 
is typically intended—at least in part—to enable 
communal data sharing. Often, such software is 
open source. The third breakout group focused its 

discussion on data sharing (primarily) and open 
source software. Several key issues emerged: 

Research groups clearly vary in their willingness •	
to share data. Communities where the science is 
inherently multidisciplinary are more open to 
sharing data. Conversely, in communities where 
funding is in jeopardy, groups might be less willing 
to share data so as to maintain a competitive edge. 
Metadata and data misuse can be problematic. •	
For example, to properly use data, it’s impor-
tant to know the data provenance: Does the 
laboratory that produced the data have a good  
reputation? What are the underlying assumptions 
of the model for which the data was produced?
Agreeing on a data format can be problematic. •	
A successful example here is Google Earth, 
which uses a simple data format to enable col-
laboration among geoscientists. 
Data ownership is important when producing •	
papers. When many scientists work on the same 
problem, a paper’s authors can run into (at least) 
the tens. There doesn’t yet appear to be a con-
sistent approach for dealing with this issue. 
In both North America and the UK (and possibly •	
other countries not represented in this breakout 
group), funding institutions often require that the 
scientific software they fund be open source, which 
poses licensing complications. Problems can also 
arise when a system that’s developed to address 
one particular problem isn’t flexible enough to  
address the problems of other research groups.

To address these problems, the group conclud-
ed that it’s important to first characterize the CSE 
communities to identify segments that behave 
differently. This idea follows on one raised in the 
2008 workshop, where an initial list of character-
istics was developed.2 Among those characteristics 
were a scientific domain, the use of a high- 
performance computing platform, level of domain 
understanding, team size, and fault-tolerance  
level. During the 2009 workshop, we added the fol-
lowing attributes to that list: willingness to share 
data, funding stability, open source requirement, 
why a group is willing to be studied, the type of 
feedback provided to the team, and which software 
engineering techniques and tools are used. 

Overall, the 2009 workshop was in-
teresting and the discussions were 
lively. We look forward to holding 
more in the future. One question 

that wasn’t fully addressed was whether there are 
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other venues where we might hold similar work-
shops and have greater participation from the 
CSE community. Among the suggestions so far 
are that we investigate a geosciences conference, 
the upcoming Society for Industrial and Applied 
Mathematics (SIAM) conferences on parallel 
processing and scientific computing (2010) and 
computational science (2011), and the Interna-
tional Conference on Computational Science 
(2010). If you’re interested in more information 
or have venue suggestions, please contact me at 
carver@cs.ua.edu. 			        
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