
14	� Computing in Science & Engineering

S o f t w a r e
e n g i n e e r i n g

Held during the 2009 International Conference on Software Engineering, this workshop
provided a venue for software engineering researchers to interact with CSE researchers and
practitioners and further strengthen the evolving dialogue between them. This report offers
a brief overview of the workshop’s position papers and summarizes the breakout group
discussions.

Report: The Second International
Workshop on Software
Engineering for CSE

A lthough CSE software plays an im-
portant role in society, the software
engineering community has histori-
cally given little attention to study-

ing CSE’s state-of-the-practice. In recent years,
however, software engineering researchers and
CSE software developers have begun creating
a community for the mutual exchange of ideas
and knowledge. Early support of this effort came
from the International Conference on Software
Engineering,1 which held its first workshop on
software engineering for high-performance com-
puting in 2004; in the past two years, that work-
shop’s focus expanded to include all types of CSE
software. The motive for this expansion was the
realization that, while supercomputer use entails
unique challenges, most CSE software shares
some common characteristics and issues, whether
it’s developed for use on a supercomputer or on a
PC. Broadening the workshop to include all types
of CSE software therefore made sense.

The benefits of a strong dialog between soft-
ware engineering and CSE are clearly mutual.

Because CSE software projects have unique char-
acteristics, software engineers will have much to
gain from and offer to the CSE community once
key distinctions2–4 between the two fields are
properly understood:

CSE projects often explore unknown sci-•	
ence and thus many of the requirements
(beyond the laws of nature) can’t be known a
priori and must emerge throughout the devel-
opment process.
Because CSE projects often investigate new •	
scientific findings, the software’s expected out-
put is sometimes unknown, making it difficult
or impossible to define test oracles. As a result,
traditional software testing approaches are
problematic.
A CSE project’s life cycle is likely to differ •	
from traditional models. For example, in one
workflow (“lone researcher”), a single scien-
tist develops software to test a hypothesis and
then discards the software. As another example,
some projects can last 10 years or more and are
in constant development throughout.
CSE software sometimes requires extensive com-•	
puting resources in terms of processing power for
simulations or data throughput for data-intensive
applications. These resource needs can require
the development of complex software.

Jeffrey C. Carver
University of Alabama

1521-9615/09/$26.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

CISE-11-6-carv.indd 14 10/15/09 2:16:45 PM

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 6, 2010 at 16:02 from IEEE Xplore. Restrictions apply.

November/December 2009 � 15

Many CSE software developers are experts—•	
often with a PhD in the underlying scientific
or engineering domain—but have little for-
mal training in software engineering tools and
techniques. It’s not uncommon for a single sci-
entist to take on the role of software developer
and then rely solely on the Internet to acquire
relevant software development knowledge.

In this year’s workshop, our focus was on dis-
cussing and understanding the development of
two important types of CSE software. The first
type is scientific or engineering software applica-
tions that aim to solve or provide insight into a
specific scientific or engineering problem; exam-
ples include computational simulations and com-
plex bioinformatics algorithms. The second type
is software to support scientific or engineering
applications, such as data management systems,
workflow management systems, and data visual-
ization systems.

Summary of Position Papers
The following summarizes the 2009 workshop’s
eight position papers. The full papers are available
in the IEEExplore Digital Library (included in
the ICSE proceedings); the workshop Web page
(www.cs.ua.edu/~SECSE09) offers links to the
proceedings and the presentation slides.

In “Testing for Trustworthiness in Scientific
Software,” Daniel Hook and Diane Kelly describe
two problems that scientists face when testing
their software: the lack of a test oracle and the
many tests required to validate the code. Hook
and Kelly maintain that, rather than fully test-
ing the code for correctness, developers should
instead test their code for trustworthiness using
methods such as mutation testing.

In “Comparing Bioinformatics Software De-
velopment by Computer Scientists and Biologists:
An Exploratory Study,” Parmit Chilana, Carole
Palmer, and Andrew Ko examined how bioinfor-
matics software developers—including computer
scientists and biologists—seek out the informa-
tion they need to develop their software. To dis-
cover this, they interviewed developers and found
that a developer’s colleagues are an important
source of information. Their paper also discusses
how developers could employ better organization
to find important information more easily.

In “Some Challenges Facing Software Engi-
neers Developing Software for Scientists,” Judith
Segal describes two particular challenges that
software engineers face when developing scientific
software. First, scientists use their own software

development models, which don’t resemble tradi-
tional software engineering models. Further, the
success of their models is affected by many (often
unidentified) context variables. Second, commu-
nity software can greatly impact some branches
of science, yet developing this shared software en-
tails many challenges that can derail its success.

In “Refactoring and the Evolution of Fortran,”
Jeffrey Overbey, Stas Negara, and Ralph Johnson
describe how, as languages like Fortran evolve,
they become more complex and often contain
older and rarely used features. This complexity
makes it difficult to use the language and to con-
struct tools. However, tools that perform refac-
toring can eliminate complexity and make tool
development easier. For example, removing global
variables using the Photran tool will make a code
compatible with Adaptive MPI, which performs
load balancing.

In “An Empirical Characterization of Scien-
tific Software Development Projects According
to the Boehm and Turner Model: A Progress
Report,” Carlton Crabtree, A. Güne, Koru,
Carolyn Seaman, and Hakan Erdogmus describe
their planned research approach to identify char-
acteristics of scientific software projects. They’re
conducting this research through a series of in-
terviews with scientific software project teams.
Their goal in identifying these characteristics is
to help developers decide between using an agile
development method or a plan-driven develop-
ment method.

In “Integration Strategies for Computational
Science & Engineering Software,” Roscoe A. Bar-
tlett explores the challenges developers face when
they create CSE software by integrating software
written by different expert groups. The CSE soft-
ware domain poses some challenges for achieving
this integration. In addition to exploring many
of these challenges, Bartlett describes some inte-
gration approaches that have proven useful on the
Trilinos project.

In “Barely Sufficient Software Engineering:
10 Practices to Improve Your CSE Software,”
Michael Heroux and James Willenbring note that
CSE software developers are primarily focused on
research or on advancing algorithms or modeling
capability, rather than on formal software engi-
neering. Because CSE developers lack training,
resources, and time, they often fail to adopt ap-
propriate software engineering techniques. Based
on lessons learned from the Trilinos project, this
paper presents 10 basic, lightweight practices that
CSE developers can adopt to improve their soft-
ware development process.

CISE-11-6-carv.indd 15 10/15/09 2:16:46 PM

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 6, 2010 at 16:02 from IEEE Xplore. Restrictions apply.

16� Computing in Science & Engineering

In “Injecting Software Architectural Con-
straints into Legacy Scientific Applications,”
David Woollard, Chris Mattmann, and Nenad
Medvidovic note that, while using a formalized
software architecture helps with maintenance,
reuse, and evolution, many legacy CSE codes are
written in languages—such as Fortran and C—
that don’t support architectural concepts. Such
codes are therefore challenging to integrate into
systems that use a formal architecture. To address
this situation, they propose turning these legacy
codes into components wrapped in architecturally
aware interfaces. Developers can easily integrate
these wrapped components into a system that uses
architectural constructs, while also maintaining
the legacy implementation’s performance gains.

In “Reusability of FEM Software: A Program
Family Approach,” Wen Yu and Spencer Smith fo-
cus on program families, which are sets of related
programs that share a common underlying func-
tionality and code base, and are tailored for specific
applications. As Yu and Smith describe, the program
family approach is especially helpful for usability and
maintenance. They also describe how this approach
can benefit finite element method software and pro-
vide a proof of concept using a simple FEM program
family for solving beam analysis problems.

In “Developing Scientific Applications Us-
ing Generative Programming,” Ritu Arora, Pu-
rushotham Bangalore, and Marjan Mernik note
that developers can use checkpointing to make CSE
software resilient to failure when using large data-
sets and multiple resources. The problem, however,
is that many codes don’t have a built-in checkpoint-
ing feature. They describe how developers can use
generative programming to reengineer an existing
application in a nonintrusive manner. Using genera-
tive programming, developers can modify a code to
include a checkpointing feature without changing
the original code’s functionality or performance.

In “How Do Scientists Develop and Use Scien-
tific Software?” Jo Erskine Hannay, Hans Petter
Langtangen, Carolyn MacLeod, Dietmar Pfahl,
Janice Singer, and Greg Wilson describe the results
of an online survey about how scientists develop and
use software. Their survey produced almost 2,000
responses; the results indicate that scientists: consult
peers for knowledge about software development
and use; are more likely to use desktop and cluster
machines than supercomputers; rely on software
with a large user base; and believe testing is impor-
tant but typically lack sufficient knowledge about it.

Finally, in “Preparing Scientists for Scalable Soft-
ware Development,” Valerie Maxville describes Aus-
tralia’s IVEC education program for eResearchers.

CSE projects require developers who are highly
competent in both the CSE domain and in software
development. By observing multiple CSE projects,
iVEC team members can identify which formal
software engineering techniques will be useful in
the CSE domain. iVEC currently trains CSE de-
velopers in the use of the message-passing interface
(MPI) and is expanding its program to include ad-
ditional lightweight and high-return techniques to
improve CSE software development.

Breakout Groups
During the paper presentations, many interest-
ing questions arose. To address them, we formed
breakout groups around three key topics. Work-
shop attendees selected a group to join according
to the question they wanted to discuss.

Facilitating Communication
The first question was: How can scientists be effec-
tively involved in software development and training?
One reason that CSE developers underutilize
software engineering techniques is because of the
communication difficulties between the software
engineering and CSE communities.2

This breakout group focused on identifying meth-
ods to facilitate the flow of good ideas between the two
communities. The group made several observations:

Software engineering ideas and concepts must •	
be translated into terms that CSE developers
are familiar with and will understand.
We need people who understand both the soft-•	
ware engineering and the CSE domain.
Software engineers can’t make changes from the •	
outside; the CSE team must know and trust them.
Encouraging the use of software engineering •	
for lone researchers (or small teams) is different
than for large development teams.
CSE teams won’t be motivated to adapt soft-•	
ware engineering until they encounter a vexing
problem.
The extreme programming practice of pair •	
programming5 is a possible way to bring soft-
ware engineering to CSE projects.

Based on these observations, it’s clear that there’s
still a communication chasm between software
engineering researchers and the scientists who are
developing software. To make advances in CSE,
we must continue the effort to reduce this chasm.

Measuring Productivity
The second question was: How can software en-
gineering researchers measure their impact on the

CISE-11-6-carv.indd 16 10/15/09 2:16:46 PM

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 6, 2010 at 16:02 from IEEE Xplore. Restrictions apply.

November/December 2009 � 17

productivity of scientists? This question is key; both
scientists and funding agencies care about scientific
productivity, not software development productiv-
ity. Given this, it’s important to determine how
best to measure scientific productivity. First, how-
ever, we must determine how to define both pro-
ductivity and the measurement time scale.

Software productivity metrics—such as lines
of code per day—don’t offer insight into scien-
tific productivity. Typically, scientific productiv-
ity is measured by publications, citations, impact
factors, and so on. Of course, such metrics take a
long time to gather. Furthermore, it’s not obvious
that these metrics are actually good measures of
scientific productivity (see Carlo Ghezzi’s ICSE
2009 keynote; http://groups.google.com/group/
keynote-discussion-carlo-ghezzi-icse09/?pli=1).
In terms of measurement time scale, it’s impor-
tant to obtain concrete, valid results within a short
timeframe. Funding agencies typically want to see
documented results within six to 12 months. Also,
when testing a new approach on a project, CSE de-
velopers must see some positive impact quickly to
encourage them to continue using the approach.

The breakout group suggested three potentially
fruitful ideas:

Indirect self-assessment•	 . Ask developers to iden-
tify tasks that they wish they could do but can’t.
Have the developers make such a list before
introducing the new approach, three months
later, and three months after that.
Hype•	 . If a new approach is effective, developers
will recommend it to others, but it’s not clear
exactly how to measure this information.
Performance on an exam•	 . Measure performance
on a suite of common programming tasks before
and after training. However, this measure doesn’t
directly tie to scientific productivity for the same
reason that using “best practices” doesn’t neces-
sarily improve scientific productivity.

To achieve a high level of relevance, it’s impera-
tive that software engineering researchers iden-
tify valid and reasonable methods for measuring
scientific productivity.

Developing Community Software
The third question was: What are the software devel-
opment and use problems within scientific communities
(as opposed to with individual researchers)? Software
developed by a community of developers or users
is typically intended—at least in part—to enable
communal data sharing. Often, such software is
open source. The third breakout group focused its

discussion on data sharing (primarily) and open
source software. Several key issues emerged:

Research groups clearly vary in their willingness •	
to share data. Communities where the science is
inherently multidisciplinary are more open to
sharing data. Conversely, in communities where
funding is in jeopardy, groups might be less willing
to share data so as to maintain a competitive edge.
Metadata and data misuse can be problematic. •	
For example, to properly use data, it’s impor-
tant to know the data provenance: Does the
laboratory that produced the data have a good
reputation? What are the underlying assumptions
of the model for which the data was produced?
Agreeing on a data format can be problematic. •	
A successful example here is Google Earth,
which uses a simple data format to enable col-
laboration among geoscientists.
Data ownership is important when producing •	
papers. When many scientists work on the same
problem, a paper’s authors can run into (at least)
the tens. There doesn’t yet appear to be a con-
sistent approach for dealing with this issue.
In both North America and the UK (and possibly •	
other countries not represented in this breakout
group), funding institutions often require that the
scientific software they fund be open source, which
poses licensing complications. Problems can also
arise when a system that’s developed to address
one particular problem isn’t flexible enough to
address the problems of other research groups.

To address these problems, the group conclud-
ed that it’s important to first characterize the CSE
communities to identify segments that behave
differently. This idea follows on one raised in the
2008 workshop, where an initial list of character-
istics was developed.2 Among those characteristics
were a scientific domain, the use of a high-
performance computing platform, level of domain
understanding, team size, and fault-tolerance
level. During the 2009 workshop, we added the fol-
lowing attributes to that list: willingness to share
data, funding stability, open source requirement,
why a group is willing to be studied, the type of
feedback provided to the team, and which software
engineering techniques and tools are used.

Overall, the 2009 workshop was in-
teresting and the discussions were
lively. We look forward to holding
more in the future. One question

that wasn’t fully addressed was whether there are

CISE-11-6-carv.indd 17 10/15/09 2:16:47 PM

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 6, 2010 at 16:02 from IEEE Xplore. Restrictions apply.

18� Computing in Science & Engineering

other venues where we might hold similar work-
shops and have greater participation from the
CSE community. Among the suggestions so far
are that we investigate a geosciences conference,
the upcoming Society for Industrial and Applied
Mathematics (SIAM) conferences on parallel
processing and scientific computing (2010) and
computational science (2011), and the Interna-
tional Conference on Computational Science
(2010). If you’re interested in more information
or have venue suggestions, please contact me at
carver@cs.ua.edu. 			

Acknowledgments
I’m grateful to the workshop attendees, who pro-
vided lively discussion and an interesting day. The
breakout group notes were also an integral part of
this report.

References
	P.M. Johnson, “Workshop on Software Engineering 1.	

for High Performance Computing Systems (HPCS)

Applications,“ Proc. 26th Int’l Conf. Software Eng., IEEE
CS Press, 2004, pp. 772.
	J.C. Carver, “First International Workshop on 2.	

Software Engineering for Computational Science &

Engineering,” Computing in Science & Eng., vol. 11,

no. 2, 2009, pp. 7–11.

	J.C. Carver, “SE-CSE 2008: The First International 3.	

Workshop on Software Engineering for Computation-

al Science and Engineering,” Proc. Int’l Conf. Software
Eng. Workshop, ACM Press, 2008, pp. 1071–1072;

http://doi.acm.org/10.1145/1370175.1370252.

	J.C. Carver et al., “Software Development 4.	

Environments for Scientific and Engineering Soft-

ware: A Series of Case Studies,” Proc. 29th Int’l Conf.
Software Eng., IEEE CS Press, 2007, pp. 550–559.

	K. Beck, 5.	 Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

Jeffrey C. Carver is an assistant professor in the De-
partment of Computer Science at the University of
Alabama. His research interests include software en-
gineering for computational science and engineering,
empirical software engineering, and software process
improvement. Carver has a PhD in computer science
from the University of Maryland. He is a member of
the IEEE Computer Society and the ACM. Contact
him at carver@cs.ua.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

The magazine of computational
tools and methods for 21st
century science.
MEMBERS
$47/year
for print and online

Subscribe to
CiSE online at
http://cise.aip.org and
www.computer.org/cise

CISE-11-6-carv.indd 18 10/20/09 1:51:05 PM

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 6, 2010 at 16:02 from IEEE Xplore. Restrictions apply.

November/December 2009 � 19

CISE-11-6-carv.indd 19 10/15/09 2:17:25 PM

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 6, 2010 at 16:02 from IEEE Xplore. Restrictions apply.

