
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 July/August 2008 I E E E S o f t w a r E 	 59

focusdeve lop ing s c i en t i f i c s o f t war e

Development of a
Weather Forecasting Code:
A Case Study

Richard Kendall, David Fisher, and Dale Henderson, Software Engineering Institute

Jeffrey C. Carver, Mississippi State University

Andrew Mark, Douglass Post, and Clifford E. Rhoades Jr., US Department of Defense
High Performance Computing Modernization Program

Susan Squires, Sun Microsystems

A case study of a
weather-forecasting
code aimed to
investigate the
code development
challenges,
understand the
development tools
used, and document
the findings for
other developers.

C
omputational science is increasingly providing insight into scientific phenom-
ena that have previously been studied only experimentally, observationally, or
theoretically. Codes, the software projects written for computational science,
generally have three main differences from traditional software projects, such

as those from the commercial software domain. First, because these projects often per-
form new scientific investigations, the requirements can’t be known in advance and must
evolve over time. Second, the main driving force for these projects is producing correct,

important scientific advances rather than ensuring
software quality through formalized software engi-
neering processes. Finally, these projects’ developers
tend to be domain scientists rather than software
engineers, so they’re less likely to use any heavy
software development processes.1–3

To better understand the impact these character-
istics have on software development practices in the
computational-science domain and to document
lessons learned for similar projects’ benefit, we per-
formed a series of case studies of computational-
science code development projects sponsored by the
Darpa High Productivity Computing Systems pro-
gram. Here, we describe the sixth case study (after
Falcon,4 Hawk,5 Condor,6 Eagle,7 and Nene8).

The common objectives for all case studies were

identifying critical success factors,■

identifying issues that hardware and software
vendors must address to make the code devel-
opment process more productive,
developing a reference body of case studies for
the computational science and engineering com-
munity, and
documenting the lessons learned from analysis
and personal team interviews.

For this case study, we followed the same meth-
odology that we used in the previous case stud-
ies.2 Here, we provide only a basic overview of the
methodology to give context for understanding the
results. After we identified a suitable project, the
team completed a questionnaire. We used the re-
sponses to plan an on-site interview, after which
we iterated the results with the code team to ensure
correctness.

■

■

■

60	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Code characteristics
Osprey is one component of a large weather-
forecasting suite that combines the interactions of
large-scale atmospheric models with large-scale
oceanographic models. Osprey’s current code—
which has evolved from other codes that date
back to 1974—has been used operationally for 10
years. Development of the present version began
in 1988 as a research project that aimed to extend
the predecessor code’s capabilities. At the highest
level, the Osprey code team has some control over
the requirements through the proposal process.
That is, the team can make direct proposals to po-
tential sponsors about features to implement in the
code. This process is how the team acquired fund-
ing for code-directed goals such as the implemen-
tation of the Message Passing Interface (MPI) and
nested grids. The sponsors, which have increased
in number in recent years, often set the require-
ments through directed research and development
grants (that is, unsolicited grants). Work tends to
be funded in ever-smaller increments (relative to
constant costs), and individual code developers
now work in multiple topic areas rather than spe-
cializing in one topic.

Osprey is distributed via the Web. It has no li-
cense fee, and the team has deployed a home-grown
license manager to track the code’s distribution.
Osprey has been downloaded hundreds of times by
institutions worldwide. Some institutions have hun-
dreds of users.

Because the Osprey code is one component in a
larger system of systems, its architecture lets it both
send and receive information from the other system
components. A framework supports one-way and
two-way coupling of Osprey to other system com-
ponents, using an exchange grid to facilitate data
exchanges between components.

With the exception of approximately 300 lines
of C code, Osprey is written in a Fortran subset
(which we describe in the next section). There are
approximately 150 KLOC in Fortran, of which
approximately 50 KLOC are comments. The driv-
ing motivation behind choosing Fortran was the
need for portability and ease of development and
maintenance (similar to our findings in the Falcon,
Condor, and Nene case studies). After consider-
ing these needs, Osprey determined that Fortran
was the best language available when development
began. Although university computer science de-
partments no longer routinely teach Fortran, new
developers can master its fundamentals in a week
(using Fortran 77) to a few months (Fortran 90).
In contrast, C++ or other modern, higher-level
languages typically take much longer to master.

Furthermore, using an all-Fortran code eliminates
complicated make and link operations and other
problems associated with using multiple program-
ming languages. The project leader hasn’t en-
countered any limitations in Fortran (augmented
with the MPI) that would cause him to seriously
reconsider the choice. Moreover, programming-
language evaluation has been a distraction in the
past, so the team is reluctant to invest resources
in this area unless it has identified a specific need,
such as the one that led to implementing MPI.

Essentially one version of the Osprey program
library executes on SGI, IBM, HP, and Linux plat-
forms. A locally built preprocessor configures the
code for each supported platform. Compiler flags
configure the code to run using different par-
allel-programming libraries (such as MPI and
OpenMP).

Parallelization is a key priority because the team
must use parallel computation and processing to
achieve the performance level needed to obtain the
expected scientific results. Conversely, actual dem-
onstrations of parallel performance haven’t reached
the level that the Osprey development team be-
lieves is feasible. This shortfall results from the fact
that, to maintain portability, the code isn’t highly
tuned for any specific parallel platform; however,
some optimization occurs for each platform. In
general, however, the team avoids the use of li-
braries and machine-dependent features. Earlier
attempts at hardware-based customization led to
cluttered, unmanageable code. The emphasis now
is on general, flexible, and scalable code.

Code project and team
Osprey’s core team consists of about 10 develop-
ers and a few outside consultants and postdoctoral
researchers. The core team is located at a single
site along with most of the development teams for
the other components in the larger system of sys-
tems. However, other sites also contribute com-
ponents. Most of the core team members have
worked together for the past 10 years. The team
leaders have preferred to recruit staff members
who already have domain knowledge. Moreover,
the team has generally found individuals with
computer science backgrounds to be helpful for
specific coding tasks or applications, but it hasn’t
utilized computer scientists as part of the primary
code development team. The team has had diffi-
culties interfacing with pure computer scientists
that have had little exposure to large weather or
oceanography codes. As an example of the dif-
ficulties the team has experienced working with
computer scientists, the Osprey team leader cited

At the
highest level,
the Osprey
code team
has some

control over the
requirements
through the

proposal
process.

	 July/August 2008 I E E E S o f t w a r E 	 61

a computer scientist who wanted to make every
executable line of the code into a subroutine to
make the code easier to debug.

The Osprey team describes itself as follows:

Team members have a common professional
background.
Team management processes are largely infor-
mal and collegial.
There is strong peer pressure to contribute and
strong team member dedication to the project.
The team views code validation as especially
important.

The Osprey team indicated that code main-
tenance, portability, and speed-to-solution are the
main drivers of development, with ease of main-
tenance being paramount. They also emphasized
flexibility, by which they mean

the code must run on many platforms,
the code must port easily to the next generation
of hardware, and
the code can’t be tailored to any particular
platform.

This definition of flexibility represents a conscious
attempt to manage an important technological risk.
The Osprey developers aren’t encouraged to use all
of the constructs that Fortran supports. The prac-
tice within the Osprey development community is
to use only features that are well tested and reliable.
The team follows a style guide and uses the struc-
ture and coding practices of the code itself to train
new team members.

Osprey and the developers of the other system-
of-systems components are colocated and under a
common management structure. This colocation,
along with the Osprey development team’s rela-
tively small size, has limited the degree of formal-
ity needed to manage the team. The Osprey team
doesn’t adhere to any formal code development
methodology (such as CMM, ISO, or even for-
mal agile development processes). However, the
team has adopted repeatable coding practices and
employs coding-style requirements and standards.
From the formal software engineering viewpoint,
this project is underconstrained—as have been all
but one of the other computational science projects
that our team has examined in case studies. This
approach is successful because, for the most part,
the Osprey team can set its own milestones with
the sponsors’ approval; thus, the iron triangle (that
is, the scope, resources, and schedule) isn’t violated.
Although the team doesn’t identify with formal de-

■

■

■

■

■

■

■

velopment processes, it follows an agile philosophi-
cal approach (www.agilealliance.com) in the sense
that it emphasizes practices over process. Table 1
summarizes the extent to which the Osprey team
uses various development practices.

Of the 20 or so software development tracking
metrics9 cited in the software engineering literature,
the Osprey team employed

lines of code,
code performance,
degree of performance optimization,
parallel scaling,
number of users, and
computer time used for code development.

LOC is a general measure of the code’s growth.
There is growing pressure from sponsors for sci-
ence metrics, not code development metrics.

Osprey’s approach to configuration manage-
ment is similar to that of the other projects we’ve
studied. A part-time source code librarian uses
Subversion (http://subversion.tigris.org) to manage
the code. The code librarian logs the bugs. No for-
mal issue-tracking system has been deployed, nor
does one appear to be necessary. The code librar-
ian requires a prologue detailing a subroutine’s
purpose before it can be committed to the code li-
brary. Verification tests are also required.

Code life cycle
and workflow management
Much of the Osprey program library’s code is in
maintenance. Because Osprey is undergoing con-
tinuous enhancement, there’s always new develop-
ment and testing. At any given time, code modules
in the program library range from brand new to
20 years old. This project’s workflow is typical of
the other projects that we’ve studied, consisting of
the following steps:

question formulation,
development approach formulation,
code development,
testing (validation and verification),
production,
analysis, and
hypothesis formulation.

(This isn’t customary software engineering
language—such as requirements gathering or
specifications formulation—but it’s more de-
scriptive of the actual workflow management
process the computational-science projects we
studied employed.)

■

■

■

■

■

■

■

■

■

■

■

■

■

62	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Table 1
The Osprey team’s development practices

Practice Description followed Comments

Collective
ownership

Allow anyone to change any code anywhere in the
system at any time.

Partially Followed to a small degree; a limited set
of developers allowed to make changes

Configuration
management

Establish and maintain the integrity of work products
using configuration identification and control.

Yes A key role in this project

Continuous
integration

Integrate and build the system many times a day,
each time a task is completed.

Partially Performed weekly rather than daily

Feature-driven
development

Establish an overall architecture and feature list,
then design by feature and build by feature.

Yes Project development driven by new features

Frequent delivery/
small releases

Have many releases with short time spans;
implement the highest-priority functions first.

No Driven by task—no explicit goal to have
small releases, although this often occurs

Onsite customer Include a real, live user on the team who is available
full time to answer questions.

Yes Code’s developers are also users

Organizational
process definition

Follow an organization-wide process. No No formal organization-wide process

Organizational
training

Develop team members’ skills and knowledge so
that they can perform their roles effectively.

No Nothing formal in place

Pair programming Work side by side with another programmer at one
computer, collaborating on the design, algorithm,
and code.

No Not found to be useful

Planning game Quickly determine the scope of the next release
with business priorities and technical estimates.

No Not used

Peer reviews Review peers’ software artifacts (requirements,
design, code) to improve quality.

Partially Informal code reviews (but not
requirements or designs) used

Process and product
quality assurance

Objectively evaluate adherence to process
descriptions and resolve noncompliance.

Partially Long-term roadmap for Osprey, but
no formal monitoring of adherence
to the development strategy

Project monitoring
and control

Provide an understanding of the project’s
progress so that appropriate corrective actions
can be taken if progress deviates from plan.

Yes Internal and external reviews throughout
the year; local groups meeting weekly
to discuss issues

Project planning Establish and maintain plans that define project
activities.

Yes Planning done at the beginning of each
fiscal year as part of the funding cycle

Refactoring Restructure software to remove duplication,
improve communication, simplify, or add flexibility.

Yes Used to improve performance and make it
easier to change the code in the future

Requirements
development

Produce, analyze, and verify customer, project,
and product requirements.

Yes A formal process followed as part of
proposal generation

Requirements
management

Manage the project’s requirements and identify
inconsistencies with the project plan.

 Yes Internal milestones set by each subteam

Retrospective Perform a postiteration review of the effectiveness
of the work performed, methods used, and estimates.

Yes Performed at the annual review

Risk management Identify potential problems and adequately handle
them.

Partially Emphasis on testing and benchmarking;
conscious strategy for managing technology
risks; no formal management of other risks

Simple design Design only what is being developed, with little
planning for the future.

Partially There’s a long-term plan beyond the current
funding; the design is documented only in the
code, so features that aren’t coded haven’t been
formally designed

Tacit knowledge Maintain and update project knowledge in
participants’ heads rather than in documents.

Yes Tacit knowledge in the scientific discipline
is important

Test-driven
development

Write module or method tests before and during
coding.

Partially Testing integrated with development

	 July/August 2008 I E E E S o f t w a r E 	 63

The development path through these steps is
iterative. The team developed physics prototypes
for testing in the Osprey code framework. The
team wrote these prototypes as candidates for di-
rect inclusion into the code, so there’s also an as-
pect of spiral development. Unlike some other proj-
ects we’ve studied, these prototypes aren’t written
in a higher-level language such as Matlab. How-
ever, the Osprey team sometimes uses Matlab to
study parameterization issues. There is some refac-
toring of old modules as capabilities are replaced
or enhanced. The project has no mandated release
schedule; releases occur when new capabilities or
bug fixes are ready. Last year there were 10 re-
leases, but some were small fixes. The download-
able version is two years old (that is, well behind
the most current version).

As we’ve observed in our other case studies,
most sponsors don’t directly fund code mainte-
nance. It’s not entirely clear that development is
funded directly either—the funding is usually di-
rected toward the science, not the code.

The team does testing both during and at the
end of development. Team members can’t submit
new capabilities for inclusion in the Osprey pro-
gram library unless the capabilities pass verifica-
tion tests. The developers do substantial testing
before submitting capabilities to the configuration-
management process. Team members share quality
assurance. After internal testing, the code is trans-
ferred to a primary customer for additional, inde-
pendent testing prior to release. For major changes,
an independent panel with broad stakeholder rep-
resentation performs a series of tests before the
transition to production.

A goal of our case studies has been to document
the tools the code development teams use (see Fig-
ure 1 for a summary of these for Osprey). The use
of particular tools, such as TotalView, hasn’t been
mandated and is often a matter of personal prefer-
ence. IDL is used primarily by customers, not de-
velopers. In general, developers prefer open source
tools.

Lessons learned
All our case studies have extracted important les-
sons for the computational science and engineer-
ing code development community. These lessons
can guide software engineers seeking to better un-
derstand how to successfully work with this type
of code project. In this case study, we present two
types of lessons learned. First, we describe the les-
sons the Osprey team members learned. Then we
combine those lessons with our observations from
the questionnaire and interviews into the context

of our previous studies’ findings.
First, the Osprey team members articulated the

following lessons learned:

If it’s important, do it right.
Listen to the customer.
Data assimilation becomes increasingly impor-
tant as the model grows in sophistication.
Configuration management is essential.
Physical parameterizations remain a necessary
evil, but you should avoid them if physical mod-
els are feasible.
Validation and verification are crucial to im-
proving and accepting scientific codes.
Strive for performance, but not at all costs.
Build flexibility into the system.

In our previous case studies of computational
science codes, we made nine observations about the
software development environments used.2 The les-
sons the Osprey team learned and our observations
from the questionnaire and interviews provided
support for seven of those earlier observations.
Here, we describe them in more detail along with
the supporting information from the case study.

a code project’s primary language is
constant over the project’s long lifetime
These projects tend to last multiple years (even de-
cades), as evidenced by the fact that some of the
Osprey project’s code dates back 30 years. There-
fore, you might expect that the programming lan-
guage would evolve over time as more modern
languages are developed and standardized. Con-
versely, in Osprey and the other codes we studied,
the basic language didn’t change over time. The

■

■

■

■

■

■

■

■

Code development environment
 Compilers Fortran, C
 Scripts Perl
 Debuggers DX, TotalView
 Performance analysis: profilers prof

Execution environment
 Element/grid generation GrADS
 Visualization IDL, Matlab
 Data analysis IDL, NCAR command language

Code development process tools
 Configuration management Subversion
 Bug tracking No formal tools deployed
 Code documentation Users’ manual, code documentation, Web site

Support libraries
 Computational mathematics BLAS
 Parallel-programming libraries MPI, MPI-2, OpenMP

Figure 1. Osprey’s
life-cycle management
tools.

64	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Osprey team still uses Fortran because it’s easy
to learn compared with modern languages. This
is true also because the team has yet to encounter
a weather-modeling requirement that couldn’t be
programmed efficiently, both in terms of program-
mer effort and execution time, using Fortran.

Use of higher-level languages is low
The Osprey project uses high-level languages such
as Matlab very sparingly, if at all. In some other
cases, we’ve seen Matlab used as a prototyping lan-
guage almost akin to a statement of requirements.
But none of the projects we studied extensively used
such languages.

risk management is important
These types of projects’ long lives present risks that
aren’t always present in other types of software. In
our previous studies, teams viewed externally devel-
oped tools and libraries as risky because of the like-
lihood of the vendor going out of business during
the project’s life cycle. For the Osprey project, lack
of flexibility was an important risk. To address this
risk, they designed and implemented the code so
that it wasn’t closely tied to any particular platform
and could be easily ported to new platforms as they
became available.

Performance isn’t the only
important nonfunctional requirement
All the code projects we studied used high-
performance supercomputers, so performance (that
is, speed of execution) was an implied goal. In Os-
prey, performance is an important goal, but only to
the extent that it improves the code’s scientific out-
put. In other words, scientific goals drive the need
to achieve a particular performance level. Osprey’s
main focus is to support scientific research, not
to demonstrate computer science ability or even
achieve impressive performance numbers. Although
it isn’t the main driver, code performance is still im-
portant to the Osprey team because its customers
require real-time applications that support opera-
tional functions. In addition, as discussed earlier,
maintainability and portability are also essential to
the Osprey code’s success.

agile approaches are better suited
than more traditional methodologies
In the projects we studied, including Osprey,
scientific-code teams valued agility over formalized
processes. That is, they usually avoided rigid soft-
ware management approaches, but planning and
adoption of useful software practices are important
to the success of these projects. We’ve found that

development teams can function well with a very
lightweight process as long as teams are small, per-
form adequate planning, and have good commu-
nication among team members. Although Osprey
and the other code teams we studied didn’t use one
of the formal agile methodologies (such as Scrum
or XP), they did operate their team according to the
mind-set proposed in the Agile Manifesto (http://
agilemanifesto.org). The choice to operate this way
emerged out of necessity rather than a conscious
decision to follow one specific agile approach over
another.

Multidisciplinary teams are important
The complex nature of the scientific domains for
which computational science is effective necessitate
that much of the code be written by domain ex-
perts (scientists). It’s simply too difficult to teach a
computer scientist or software engineer the techni-
cal details of a scientific domain for which a PhD is
needed to even understand the problem to be solved.
In many cases, including Osprey, these teams have
found it effective to use computer scientists’ exper-
tise and ability to perform specific coding tasks that
don’t require extensive domain knowledge.

Project success or failure depends on
keeping customers and sponsors happy
As in any type of project, its longevity depends on
its success among its customers. One unique aspect
of the computational science projects we studied,
including Osprey, is that the customer and the users
aren’t always the same group of people. So, to be
successful, a project must keep both the users (other
scientists) and the customers (the sponsors or fund-
ing agencies) satisfied. If the code project meets the
technical goals the customers set, but isn’t seen as
useful by the end users, then it won’t be viewed as a
success over the long term.

W e hope that these lessons learned will
be useful to other scientific-code devel-
opers. We realize that the Osprey proj-

ect might be unique and might not represent expe-
riences in other domains. Nonetheless, we believe
that many of these lessons are applicable to a broad
range of computational science projects.

Acknowledgments
We thank the Osprey team members for participating
in this case study. Air Force grant FA8750-05-1-0100
supported this research in part.

Osprey is a pseudonym; we have masked or omit-
ted any details that might reveal the code project’s
identity.

The Osprey
team still

uses Fortran
because it’s
easy to learn

compared
with modern
languages.

	 July/August 2008 I E E E S o f t w a r E 	 65

References
 1. J.C. Carver, “Post-Workshop Report for the Third In-

ternational Workshop on Software Engineering for High
Performance Computing Applications (Sehpc 07),” ACM
Sigsoft Software Eng. Notes, vol. 32, no. 5, 2007, pp.
38–43.

 2. J.C. Carver et al., “Software Development Environ-
ments for Scientific and Engineering Software: A Series
of Case Studies,” Proc. 29th Int’l Conf. Software Eng.,
IEEE CS Press, 2007, pp. 550–559.

 3. L. Hochstein and V.R. Basili, “The ASC-Alliance Proj-
ects: A Case Study of Large-Scale Parallel Scientific
Code Development,” Computer, vol. 41, no. 3, 2008,
pp. 50–58.

 4. D.E. Post, R.P. Kendall, and E. Whitney, “Case Study
of the Falcon Project,” Proc. 2nd Int’l Workshop Soft-
ware Eng. for High Performance Computing Systems
Applications, ACM Press, 2005, pp. 22–26.

 5. R.P. Kendall et al., Case Study of the Hawk Code Proj-
ect, tech. report LA-UR-05-9011, Los Alamos Nat’l
Lab, 2005.

 6. R.P. Kendall et al., Case Study of the Condor Code
Project, tech. report LA-UR-05-9291, Los Alamos Nat’l
Lab, 2005.

 7. R.P. Kendall et al., Case Study of the Eagle Code Proj-
ect, tech. report LA-UR-06-1092, Los Alamos Nat’l
Lab, 2006.

 8. R.P. Kendall, D. Post, and A. Mark, Case Study of the
NENE Code Project, tech. note CMUI/SEI-2006-TN-
044, Software Eng. Inst., Jan. 2007.

 9. E.E. Mills, Software Metrics, Software Eng. Inst. Cur-
riculum Module, SEI-CM-12-1.1, 1988, www.sei.cmu.
edu/pub/education/cm12.pdf.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors

Richard Kendall is a visiting scientist at the Software Engi-
neering Institute and retired CIO of Los Alamos National Laboratory.
His research interests include computational methods in partial dif-
ferential equations, computational physics of oil and gas exploration,
computer security, software engineering, and software assurance
processes. Kendall received his PhD in mathematics from Rice Uni-
versity. He’s a member of the Society of Petroleum Engineers and the
IEEE. Contact him at rkendall@sei.cmu.edu.

Jeffrey C. Carver is an assistant professor in the Computer Sci-
ence and Engineering Department at Mississippi State University. Be-
ginning 16 August, he’ll be an assistant professor in the Department of
Computer Science at the University of Alabama. His research inter-
ests include empirical software engineering, software engineering for
computational science, software architecture, and requirements engi-
neering. Carver received his PhD from the University of Maryland.
He’s a member of the IEEE Computer Society, ACM, American Society
for Engineering Education, and International Software Engineering
Research Network. Contact him at carver@cse.msstate.edu until 16 Aug., and at carver@cs.ua.
edu after that date.

David Fisher is the chief engineer for the Create program
and project manager for Create infrastructure in the Department
of Defense High Performance Computing Modernization Program.
He completed the work described in this article while he was at the
Software Engineering Institute. His interests include computational
science and engineering, high-performance computing, software
engineering of complex systems, emergent behavior, and software
development infrastructure. Fisher received his PhD in computer
science from Carnegie Mellon University. Contact him at david.

a.fisher@hpcmo.hpc.mil.

Dale Henderson is retired from the Los Alamos National
Laboratory after a long career in basic and applied research, with
some focus on large-scale computation and computer simulation.
Henderson received his PhD from Cornell University in applied phys-
ics. He’s a member of the American Physical Society. Contact him at
denise-dale@newmexico.com.

Andrew Mark is the program manager for DoD software
applications in the DoD High Performance Computing Modernization
Program. His academic interests include continuum mechanics, and
his professional interests include the development of integrated
software tool suites for design, testing, and analysis of DoD materiel
acquisition programs. Mark received his PhD in applied mechanics
from Drexel University. He’s a member of the American Institute of
Aeronautics and Astronautics and American Society of Mechanical
Engineers. Contact him at amark@hpcmo.hpc.mil.

Douglass Post is the chief scientist of the DoD High Perfor-
mance Computing Modernization Program. He is a permanent
member of the senior technical staff of the Software Engineering
Institute. At the HPCMP, he also manages the DoD Create program to
develop large-scale computational engineering tools for designing
ships, airplanes, and RF antennas. His research interests include the
development of computational engineering and science tools and
the associated software engineering issues. Post received his PhD in
physics from Stanford University. He’s a fellow of the IEEE, American
Physical Society, and American Nuclear Society. Contact him at post@ieee.org.

Clifford E. Rhoades Jr. is the technical director of the Maui
High Performance Computing Center under an Intergovernmental
Personnel Act assignment from the Software Engineering Institute. His
research interests include computational physics, high-performance
computing algorithms, and software engineering. Rhoades received
his PhD in physics from Princeton University. He was one of the first
five American Physical Society fellows elected in computational phys-
ics. He’s a member of the ACM, the Air Force Association, the Ameri-
can Institute of Aeronautics and Astronautics, the American Physical

Society, the IEEE, and the IEEE Computer Society. Contact him at crhoades@hpcmo.hpc.mil.

Susan Squires is executive director of user research at Tac-
tics, a user and customer research consultancy firm that specializes
in ethnography to gain insight in connecting what people do to what
they say. She completed the work described in this article while she
was at Sun. She’s a practicing anthropologist with experience in
customer research, strategic planning, and program management.
Squires received her PhD in anthropology from Boston University.
She is a fellow of the Society for Applied Anthropology. Contact her
at susan.squires@acelere.net.

