
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0  ©  2 0 0 8  I E E E 	 July/August 2008   I E E E  S o f t w a r E 	 59

focusdeve lop ing  s c i en t i f i c  s o f t war e

Development of a  
Weather Forecasting Code: 
A Case Study

Richard Kendall, David Fisher, and Dale Henderson, Software Engineering Institute

Jeffrey C. Carver, Mississippi State University

Andrew Mark, Douglass Post, and Clifford E. Rhoades Jr., US Department of Defense  
High Performance Computing Modernization Program

Susan Squires, Sun Microsystems

A case study of a 
weather-forecasting 
code aimed to 
investigate the 
code development 
challenges, 
understand the 
development tools 
used, and document 
the findings for 
other developers.

C
omputational science is increasingly providing insight into scientific phenom-
ena that have previously been studied only experimentally, observationally, or 
theoretically. Codes, the software projects written for computational science, 
generally have three main differences from traditional software projects, such 

as those from the commercial software domain. First, because these projects often per-
form new scientific investigations, the requirements can’t be known in advance and must 
evolve over time. Second, the main driving force for these projects is producing correct,

important scientific advances rather than ensuring 
software quality through formalized software engi-
neering processes. Finally, these projects’ developers 
tend to be domain scientists rather than software 
engineers, so they’re less likely to use any heavy 
software development processes.1–3

To better understand the impact these character-
istics have on software development practices in the 
computational-science domain and to document 
lessons learned for similar projects’ benefit, we per-
formed a series of case studies of computational- 
science code development projects sponsored by the 
Darpa High Productivity Computing Systems pro-
gram. Here, we describe the sixth case study (after 
Falcon,4 Hawk,5 Condor,6 Eagle,7 and Nene8).

The common objectives for all case studies were

identifying critical success factors,■

identifying issues that hardware and software 
vendors must address to make the code devel-
opment process more productive,
developing a reference body of case studies for 
the computational science and engineering com-
munity, and
documenting the lessons learned from analysis 
and personal team interviews.

For this case study, we followed the same meth-
odology that we used in the previous case stud-
ies.2 Here, we provide only a basic overview of the 
methodology to give context for understanding the 
results. After we identified a suitable project, the 
team completed a questionnaire. We used the re-
sponses to plan an on-site interview, after which 
we iterated the results with the code team to ensure 
correctness.

■

■

■



60	 I E E E  S o f t w a r E    w w w . c o m p u t e r . o r g / s o f t w a r e

Code characteristics
Osprey is one component of a large weather- 
forecasting suite that combines the interactions of 
large-scale atmospheric models with large-scale 
oceanographic models. Osprey’s current code—
which has evolved from other codes that date 
back to 1974—has been used operationally for 10 
years. Development of the present version began 
in 1988 as a research project that aimed to extend 
the predecessor code’s capabilities. At the highest 
level, the Osprey code team has some control over 
the requirements through the proposal process. 
That is, the team can make direct proposals to po-
tential sponsors about features to implement in the 
code. This process is how the team acquired fund-
ing for code-directed goals such as the implemen-
tation of the Message Passing Interface (MPI) and 
nested grids. The sponsors, which have increased 
in number in recent years, often set the require-
ments through directed research and development 
grants (that is, unsolicited grants). Work tends to 
be funded in ever-smaller increments (relative to 
constant costs), and individual code developers 
now work in multiple topic areas rather than spe-
cializing in one topic. 

Osprey is distributed via the Web. It has no li-
cense fee, and the team has deployed a home-grown 
license manager to track the code’s distribution. 
Osprey has been downloaded hundreds of times by 
institutions worldwide. Some institutions have hun-
dreds of users.

Because the Osprey code is one component in a 
larger system of systems, its architecture lets it both 
send and receive information from the other system 
components. A framework supports one-way and 
two-way coupling of Osprey to other system com-
ponents, using an exchange grid to facilitate data 
exchanges between components. 

With the exception of approximately 300 lines 
of C code, Osprey is written in a Fortran subset 
(which we describe in the next section). There are 
approximately 150 KLOC in Fortran, of which 
approximately 50 KLOC are comments. The driv-
ing motivation behind choosing Fortran was the 
need for portability and ease of development and 
maintenance (similar to our findings in the Falcon, 
Condor, and Nene case studies). After consider-
ing these needs, Osprey determined that Fortran 
was the best language available when development 
began. Although university computer science de-
partments no longer routinely teach Fortran, new 
developers can master its fundamentals in a week 
(using Fortran 77) to a few months (Fortran 90). 
In contrast, C++ or other modern, higher-level 
languages typically take much longer to master. 

Furthermore, using an all-Fortran code eliminates 
complicated make and link operations and other 
problems associated with using multiple program-
ming languages. The project leader hasn’t en-
countered any limitations in Fortran (augmented 
with the MPI) that would cause him to seriously 
reconsider the choice. Moreover, programming-
language evaluation has been a distraction in the 
past, so the team is reluctant to invest resources 
in this area unless it has identified a specific need, 
such as the one that led to implementing MPI.

Essentially one version of the Osprey program 
library executes on SGI, IBM, HP, and Linux plat-
forms. A locally built preprocessor configures the 
code for each supported platform. Compiler flags 
configure the code to run using different par-
allel-programming libraries (such as MPI and 
OpenMP). 

Parallelization is a key priority because the team 
must use parallel computation and processing to 
achieve the performance level needed to obtain the 
expected scientific results. Conversely, actual dem-
onstrations of parallel performance haven’t reached 
the level that the Osprey development team be-
lieves is feasible. This shortfall results from the fact 
that, to maintain portability, the code isn’t highly 
tuned for any specific parallel platform; however, 
some optimization occurs for each platform. In 
general, however, the team avoids the use of li-
braries and machine-dependent features. Earlier 
attempts at hardware-based customization led to 
cluttered, unmanageable code. The emphasis now 
is on general, flexible, and scalable code.

Code project and team
Osprey’s core team consists of about 10 develop-
ers and a few outside consultants and postdoctoral 
researchers. The core team is located at a single 
site along with most of the development teams for 
the other components in the larger system of sys-
tems. However, other sites also contribute com-
ponents. Most of the core team members have 
worked together for the past 10 years. The team 
leaders have preferred to recruit staff members 
who already have domain knowledge. Moreover, 
the team has generally found individuals with 
computer science backgrounds to be helpful for 
specific coding tasks or applications, but it hasn’t 
utilized computer scientists as part of the primary 
code development team. The team has had diffi-
culties interfacing with pure computer scientists 
that have had little exposure to large weather or 
oceanography codes. As an example of the dif-
ficulties the team has experienced working with 
computer scientists, the Osprey team leader cited 
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a computer scientist who wanted to make every 
executable line of the code into a subroutine to 
make the code easier to debug.

The Osprey team describes itself as follows:

Team members have a common professional 
background.
Team management processes are largely infor-
mal and collegial.
There is strong peer pressure to contribute and 
strong team member dedication to the project.
The team views code validation as especially 
important.

The Osprey team indicated that code main-
tenance, portability, and speed-to-solution are the 
main drivers of development, with ease of main-
tenance being paramount. They also emphasized 
flexibility, by which they mean

the code must run on many platforms,
the code must port easily to the next generation 
of hardware, and
the code can’t be tailored to any particular 
platform.

This definition of flexibility represents a conscious 
attempt to manage an important technological risk. 
The Osprey developers aren’t encouraged to use all 
of the constructs that Fortran supports. The prac-
tice within the Osprey development community is 
to use only features that are well tested and reliable. 
The team follows a style guide and uses the struc-
ture and coding practices of the code itself to train 
new team members. 

Osprey and the developers of the other system-
of-systems components are colocated and under a 
common management structure. This colocation, 
along with the Osprey development team’s rela-
tively small size, has limited the degree of formal-
ity needed to manage the team. The Osprey team 
doesn’t adhere to any formal code development 
methodology (such as CMM, ISO, or even for-
mal agile development processes). However, the 
team has adopted repeatable coding practices and 
employs coding-style requirements and standards. 
From the formal software engineering viewpoint, 
this project is underconstrained—as have been all 
but one of the other computational science projects 
that our team has examined in case studies. This 
approach is successful because, for the most part, 
the Osprey team can set its own milestones with 
the sponsors’ approval; thus, the iron triangle (that 
is, the scope, resources, and schedule) isn’t violated. 
Although the team doesn’t identify with formal de-
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velopment processes, it follows an agile philosophi-
cal approach (www.agilealliance.com) in the sense 
that it emphasizes practices over process. Table 1 
summarizes the extent to which the Osprey team 
uses various development practices. 

Of the 20 or so software development tracking 
metrics9 cited in the software engineering literature, 
the Osprey team employed

lines of code,
code performance,
degree of performance optimization,
parallel scaling,
number of users, and
computer time used for code development.

LOC is a general measure of the code’s growth. 
There is growing pressure from sponsors for sci-
ence metrics, not code development metrics.

Osprey’s approach to configuration manage-
ment is similar to that of the other projects we’ve 
studied. A part-time source code librarian uses 
Subversion (http://subversion.tigris.org) to manage 
the code. The code librarian logs the bugs. No for-
mal issue-tracking system has been deployed, nor 
does one appear to be necessary. The code librar-
ian requires a prologue detailing a subroutine’s 
purpose before it can be committed to the code li-
brary. Verification tests are also required.

Code life cycle  
and workflow management
Much of the Osprey program library’s code is in 
maintenance. Because Osprey is undergoing con-
tinuous enhancement, there’s always new develop-
ment and testing. At any given time, code modules 
in the program library range from brand new to 
20 years old. This project’s workflow is typical of 
the other projects that we’ve studied, consisting of 
the following steps:

question formulation,
development approach formulation,
code development,
testing (validation and verification),
production,
analysis, and
hypothesis formulation.

(This isn’t customary software engineering 
language—such as requirements gathering or 
specifications formulation—but it’s more de-
scriptive of the actual workflow management 
process the computational-science projects we 
studied employed.)
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Table 1
The Osprey team’s development practices

Practice Description followed Comments

Collective  
ownership

Allow anyone to change any code anywhere in the  
system at any time.

Partially Followed to a small degree; a limited set  
of developers allowed to make changes

Configuration 
management

Establish and maintain the integrity of work products 
using configuration identification and control.

Yes A key role in this project

Continuous 
integration

Integrate and build the system many times a day, 
each time a task is completed.

Partially Performed weekly rather than daily

Feature-driven  
development

Establish an overall architecture and feature list, 
then design by feature and build by feature.

Yes Project development driven by new features

Frequent delivery/
small releases

Have many releases with short time spans;  
implement the highest-priority functions first.

No Driven by task—no explicit goal to have  
small releases, although this often occurs

Onsite customer Include a real, live user on the team who is available  
full time to answer questions.

Yes Code’s developers are also users

Organizational  
process definition

Follow an organization-wide process. No No formal organization-wide process

Organizational 
training

Develop team members’ skills and knowledge so  
that they can perform their roles effectively.

No Nothing formal in place

Pair programming Work side by side with another programmer at one  
computer, collaborating on the design, algorithm,  
and code.

No Not found to be useful

Planning game Quickly determine the scope of the next release  
with business priorities and technical estimates.

No Not used

Peer reviews Review peers’ software artifacts (requirements,  
design, code) to improve quality.

Partially Informal code reviews (but not  
requirements or designs) used

Process and product 
quality assurance

Objectively evaluate adherence to process  
descriptions and resolve noncompliance.

Partially Long-term roadmap for Osprey, but  
no formal monitoring of adherence  
to the development strategy

Project monitoring 
and control

Provide an understanding of the project’s  
progress so that appropriate corrective actions  
can be taken if progress deviates from plan.

Yes Internal and external reviews throughout  
the year; local groups meeting weekly  
to discuss issues

Project planning Establish and maintain plans that define project  
activities.

Yes Planning done at the beginning of each 
fiscal year as part of the funding cycle

Refactoring Restructure software to remove duplication,  
improve communication, simplify, or add flexibility.

Yes Used to improve performance and make it  
easier to change the code in the future

Requirements  
development

Produce, analyze, and verify customer, project,  
and product requirements.

Yes A formal process followed as part of  
proposal generation

Requirements  
management

Manage the project’s requirements and identify 
inconsistencies with the project plan.

 Yes Internal milestones set by each subteam

Retrospective Perform a postiteration review of the effectiveness  
of the work performed, methods used, and estimates.

Yes Performed at the annual review

Risk management Identify potential problems and adequately handle  
them.

Partially Emphasis on testing and benchmarking;  
conscious strategy for managing technology  
risks; no formal management of other risks

Simple design Design only what is being developed, with little  
planning for the future.

Partially There’s a long-term plan beyond the current  
funding; the design is documented only in the 
code, so features that aren’t coded haven’t been 
formally designed

Tacit knowledge Maintain and update project knowledge in  
participants’ heads rather than in documents.

Yes Tacit knowledge in the scientific discipline  
is important

Test-driven  
development

Write module or method tests before and during  
coding.

Partially Testing integrated with development
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The development path through these steps is  
iterative. The team developed physics prototypes 
for testing in the Osprey code framework. The 
team wrote these prototypes as candidates for di-
rect inclusion into the code, so there’s also an as-
pect of spiral development. Unlike some other proj-
ects we’ve studied, these prototypes aren’t written 
in a higher-level language such as Matlab. How-
ever, the Osprey team sometimes uses Matlab to 
study parameterization issues. There is some refac-
toring of old modules as capabilities are replaced 
or enhanced. The project has no mandated release 
schedule; releases occur when new capabilities or 
bug fixes are ready. Last year there were 10 re-
leases, but some were small fixes. The download-
able version is two years old (that is, well behind 
the most current version). 

As we’ve observed in our other case studies, 
most sponsors don’t directly fund code mainte-
nance. It’s not entirely clear that development is 
funded directly either—the funding is usually di-
rected toward the science, not the code.

The team does testing both during and at the 
end of development. Team members can’t submit 
new capabilities for inclusion in the Osprey pro-
gram library unless the capabilities pass verifica-
tion tests. The developers do substantial testing 
before submitting capabilities to the configuration-
management process. Team members share quality 
assurance. After internal testing, the code is trans-
ferred to a primary customer for additional, inde-
pendent testing prior to release. For major changes, 
an independent panel with broad stakeholder rep-
resentation performs a series of tests before the 
transition to production.

A goal of our case studies has been to document 
the tools the code development teams use (see Fig-
ure 1 for a summary of these for Osprey). The use 
of particular tools, such as TotalView, hasn’t been 
mandated and is often a matter of personal prefer-
ence. IDL is used primarily by customers, not de-
velopers. In general, developers prefer open source 
tools.

Lessons learned
All our case studies have extracted important les-
sons for the computational science and engineer-
ing code development community. These lessons 
can guide software engineers seeking to better un-
derstand how to successfully work with this type 
of code project. In this case study, we present two 
types of lessons learned. First, we describe the les-
sons the Osprey team members learned. Then we 
combine those lessons with our observations from 
the questionnaire and interviews into the context 

of our previous studies’ findings.
First, the Osprey team members articulated the 

following lessons learned:

If it’s important, do it right.
Listen to the customer.
Data assimilation becomes increasingly impor-
tant as the model grows in sophistication.
Configuration management is essential.
Physical parameterizations remain a necessary 
evil, but you should avoid them if physical mod-
els are feasible.
Validation and verification are crucial to im-
proving and accepting scientific codes.
Strive for performance, but not at all costs.
Build flexibility into the system.

In our previous case studies of computational 
science codes, we made nine observations about the 
software development environments used.2 The les-
sons the Osprey team learned and our observations 
from the questionnaire and interviews provided 
support for seven of those earlier observations. 
Here, we describe them in more detail along with 
the supporting information from the case study.

a code project’s primary language is 
constant over the project’s long lifetime
These projects tend to last multiple years (even de-
cades), as evidenced by the fact that some of the 
Osprey project’s code dates back 30 years. There-
fore, you might expect that the programming lan-
guage would evolve over time as more modern 
languages are developed and standardized. Con-
versely, in Osprey and the other codes we studied, 
the basic language didn’t change over time. The 

■
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■
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Code development environment
 Compilers Fortran, C
 Scripts Perl
 Debuggers DX, TotalView
 Performance analysis: profilers  prof

Execution environment
 Element/grid generation GrADS
 Visualization IDL, Matlab
 Data analysis IDL, NCAR command language

Code development process tools
 Configuration management Subversion
 Bug tracking No formal tools deployed
 Code documentation Users’ manual, code documentation, Web site

Support libraries
 Computational mathematics BLAS
 Parallel-programming libraries MPI, MPI-2, OpenMP

Figure 1. Osprey’s 
life-cycle management 
tools.
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Osprey team still uses Fortran because it’s easy 
to learn compared with modern languages. This 
is true also because the team has yet to encounter 
a weather-modeling requirement that couldn’t be 
programmed efficiently, both in terms of program-
mer effort and execution time, using Fortran.

Use of higher-level languages is low
The Osprey project uses high-level languages such 
as Matlab very sparingly, if at all. In some other 
cases, we’ve seen Matlab used as a prototyping lan-
guage almost akin to a statement of requirements. 
But none of the projects we studied extensively used 
such languages.

risk management is important
These types of projects’ long lives present risks that 
aren’t always present in other types of software. In 
our previous studies, teams viewed externally devel-
oped tools and libraries as risky because of the like-
lihood of the vendor going out of business during 
the project’s life cycle. For the Osprey project, lack 
of flexibility was an important risk. To address this 
risk, they designed and implemented the code so 
that it wasn’t closely tied to any particular platform 
and could be easily ported to new platforms as they 
became available.

Performance isn’t the only  
important nonfunctional requirement
All the code projects we studied used high- 
performance supercomputers, so performance (that 
is, speed of execution) was an implied goal. In Os-
prey, performance is an important goal, but only to 
the extent that it improves the code’s scientific out-
put. In other words, scientific goals drive the need 
to achieve a particular performance level. Osprey’s 
main focus is to support scientific research, not 
to demonstrate computer science ability or even 
achieve impressive performance numbers. Although 
it isn’t the main driver, code performance is still im-
portant to the Osprey team because its customers 
require real-time applications that support opera-
tional functions. In addition, as discussed earlier, 
maintainability and portability are also essential to 
the Osprey code’s success.

agile approaches are better suited  
than more traditional methodologies
In the projects we studied, including Osprey,  
scientific-code teams valued agility over formalized 
processes. That is, they usually avoided rigid soft-
ware management approaches, but planning and 
adoption of useful software practices are important 
to the success of these projects. We’ve found that 

development teams can function well with a very 
lightweight process as long as teams are small, per-
form adequate planning, and have good commu-
nication among team members. Although Osprey 
and the other code teams we studied didn’t use one 
of the formal agile methodologies (such as Scrum 
or XP), they did operate their team according to the 
mind-set proposed in the Agile Manifesto (http:// 
agilemanifesto.org). The choice to operate this way 
emerged out of necessity rather than a conscious 
decision to follow one specific agile approach over 
another.

Multidisciplinary teams are important
The complex nature of the scientific domains for 
which computational science is effective necessitate 
that much of the code be written by domain ex-
perts (scientists). It’s simply too difficult to teach a 
computer scientist or software engineer the techni-
cal details of a scientific domain for which a PhD is 
needed to even understand the problem to be solved. 
In many cases, including Osprey, these teams have 
found it effective to use computer scientists’ exper-
tise and ability to perform specific coding tasks that 
don’t require extensive domain knowledge.

Project success or failure depends on 
keeping customers and sponsors happy
As in any type of project, its longevity depends on 
its success among its customers. One unique aspect 
of the computational science projects we studied, 
including Osprey, is that the customer and the users 
aren’t always the same group of people. So, to be 
successful, a project must keep both the users (other 
scientists) and the customers (the sponsors or fund-
ing agencies) satisfied. If the code project meets the 
technical goals the customers set, but isn’t seen as 
useful by the end users, then it won’t be viewed as a 
success over the long term.

W e hope that these lessons learned will 
be useful to other scientific-code devel-
opers. We realize that the Osprey proj-

ect might be unique and might not represent expe-
riences in other domains. Nonetheless, we believe 
that many of these lessons are applicable to a broad 
range of computational science projects.
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