
Post-Workshop report for the Third International Workshop on Software
Engineering for High Performance Computing Applications (SE-HPC 07)

Jeffrey Carver

Department of Computer Science and Engineering
Mississippi State University

carver@cse.msstate.edu

Abstract
This is the report from a one-day workshop that took place on Sat-
urday, May 26, 2007 as part of the International Conference on
Software Engineering in Minneapolis, MN, USA.

Background and Statistics
High performance computing (HPC) systems are used to develop
software for wide variety of domains including nuclear physics,
crash simulation, satellite data processing, fluid dynamics, climate
modeling, bioinformatics, and financial modeling. The TOP500
website (http://www.top500.org/) lists the top 500 high perform-
ance computing systems along with their specifications and own-
ers. The diversity of government, scientific, and commercial
organizations present on this list illustrates the growing prevalence
and impact of HPC applications on modern society.

Recent initiatives in the HPC community, such as the DARPA
High Productivity Computing Systems program, recognize that
dramatic increases in low-level benchmarks of processor speed
and memory access times do not necessarily translate into high-
level increases in actual development productivity. While the ma-
chines are getting faster, the developer effort required to fully ex-
ploit these advances can be prohibitive. There is an emerging
movement within the HPC community to define new ways of mea-
suring HPC systems, ways which take into account not only the
low-level hardware components, but the higher-level productivity
costs associated with producing usable HPC applications. This
movement creates an opportunity for the software engineering
community to apply our techniques and knowledge to a new and
important application domain.

Furthermore, the design, implementation, development, and main-
tenance of HPC software systems can differ in significant ways
from the systems and development processes more typically stud-
ied by the software engineering community:

• The requirements often include conformance to sophisticated
mathematical models. Therefore, the requirements may take
the form of an executable model in a system such as Matlab,
with the implementation involving porting to proper platform.

• Often these projects are exploring unknown science making it
difficult to determine a concrete set of requirements a prioiri.

• The software development process, or "workflow" for HPC
application development may differ profoundly from tradi-
tional software engineering processes. For example, one sci-
entific computing workflow, dubbed the "lone researcher",
involves a single scientist developing a system to test a hy-
pothesis. Once the system runs correctly once and returns its
results, the scientist has no further need of the system. This
approach contrasts with more typical software engineering li-

fecycle models, in which the useful life of the software is ex-
pected to begin, not end, after the first correct execution.

• "Usability" in the context of HPCS application development
may revolve around optimization to the machine architecture
so that computations complete in a reasonable amount of time.
The effort and resources involved in such optimization may
exceed initial development of the algorithm.

This workshop provided a unique opportunity for software engi-
neering researchers to interact with researchers and practitioners
from the HPC application community. Position papers were se-
lected from researchers representing both communities. The con-
sensus among the workshop attendees was that the overall quality
of these papers was quite high, due in part to the lack of other ven-
ues to report this type of work. These researchers shared their per-
spectives and presented findings from research and practice that
were relevant to HPC application development. A significant por-
tion of the workshop was also devoted to discussion of the position
papers with the goal of generating a research agenda to improve
tools, techniques, and experimental methods for HPC software
engineering in the future.

To lay a proper foundation, and provided valuable input through-
out the data, three invited speakers from the HPC community pro-
vided important information on software engineering challenges
from the HPC perspective and ideas for future research. These
invited talked prompted some interesting discussion and high-
lighted challenges for the future.

The list of attendees at the workshop included: Rola S. Alameh
(University of Maryland), Edward B. Allen (Mississippi State Uni-
versity), Jeffrey C. Carver (Mississippi State University), Mikhail
Chalabine (Linkoping University), Ian Gorton (Pacific Northwest
National Laboratory), Christine Halverson (IBM), Lulu He (Mis-
sissippi State University), Michael A. Heroux (Sandia National
Laboratories), Lorin M. Hochstein (University of Nebraska), Jef-
frey K. Hollingsworth (University of Maryland), David Hudak
(Ohio Supercomputing Center), Andrew Johnson (Honeywell),
Jeremy Kepner (Lincoln Laboratory), Frederick M. Lowe (Los
Alamos National Laboratory), Michael O. McCracken (University
of California, San Diego), José Muñoz (National Science Founda-
tion), Tien N. Nguyen (Iowa State University), Victor Prankratius
(University of Karlsruhe), Adam Porter (University of Maryland),
Atanas Rountev (Ohio State University), and Richard Vuduc
(Lawrence Livermore National Laboratory).

Presentations
This section provides a brief synopsis of each presentation, along
with any follow-up discussion. All of the papers and presentations
are available on the website of the workshop

ACM SIGSOFT Software Engineering Notes Page 38 September 2007 Volume 32 Number 5

mailto:carver@cse.msstate.edu
http://www.top500.org/

(http://www.cse.msstate.edu/~SEHPC07/).

Keynote - José Muñoz – “The NSF CI Vision and the Office
of CyberInfrastructure”
In the keynote presentation, José Muñoz explained how the inter-
est of the National Science Foundation in Cyberinfrastructure was
related to research on software engineering for HPC applications.
The Office of CyberInfrastructre (www.nsf.gov/oci) has the stated
mission of “greatly enhance the ability of the NSF community to
create, provision, and use the comprehensive cyberinfrastructure
essential to 21st century advances in science and engineering.” He
first explained three important activities that must be performed in
harmony: 1) Transformative Application of CyberInfrastructure to
enhance discovery and learning, 2) Provisioning to create and de-
ploy advanced CyberInfrastructure, and 3) R&D to enhance the
technical and social effectiveness of CyberInfrastructure environ-
ments. Then he highlighted some opportunities with the National
Science Foundation for researchers to pursue funding related to
these activities. Relevant programs include (while some of these
solicitations may have already closed for the current competition,
the information is still useful in preparation for future competi-
tions):

• Strategic Technologies for CyberInfrastructure (PD 06-7231);
• Accelerating Discovery in Science and Engineering through

Petascale Simulations and Analysis (NSF 07-559)
• High-End Computing University Research Activity

(HECURA)
• Community Based Data Interoperability Network (NSF 07-

565)
• Engineering Virtual Organizations (NSF 07-558)
• CI-TEAM
• Software Development for CyberInfrastructure (NSF 07-503)

Ian Gorton – “A High Performance Event Service for HPC
Applications”
This presentation described work conducted by Ian Gorton, Daniel
Chavarria, Manoj Krishnan, and Jarek Nieplocha at Pacific
Northwest Laboratory on the event service portion of the Common
Component Architecture (CCA). Gorton, et al., implemented the
CCA event service using a traditional software architecture ap-
proach: publish-and-subscribe. The goal of this work was to build
this higher-level messaging interface atop lower-level message
passing approaches like MPI, with minimal performance penalty.
Two case studies were presented to highlight the successes and
shortcomings of the approach and note room for improvement [3].

Richard Vuduc – “Tool support for inspecting the code
quality of HPC apps”
This presentation described work conducted by Thomas Panas Dan
Quinlan, and Richard Vuduc at Lawrence Livermore National La-
boratory, on a tool for visualizing the structure of HPC codes and
computing metrics. This research is based on the premise that
software development in the HPC environment is generally done
in an ad hoc manner (i.e. it does not follow standard software en-
gineering processes). Even so, developers need to be able to easily
obtain information about the quality of their code during develop-
ment. This paper described a tool that allows developers to visual-
ize relationships among code elements (e.g. call graph, file-include

graph) using the metaphor of a city to reduce the complexity of the
visualizations. Applying the tool to some standard benchmark ap-
plications showed that interesting information could be gathered
that may not have been as obvious when using more standard ap-
proaches [6].

Rola Alameh – “Performance Measurement of Novice HPC
Programmers’ Code”
This presentation described work conducted by Rola Alameh, Ni-
co Zazworka and Jeffrey K. Hollingsworth at the University of
Maryland on performance analysis of student HPC codes. They
report on a series of classroom studies to understand how novices
develop software for high performance computers. To collect data,
a series of automated tools were created called the Automated Per-
formance Measurement System (AMPS). Using AMPS, they were
able to gather a large amount of data to pose two interesting hy-
potheses. First, “spending more effort does not always result in
increased performance for novices.” Second, “the use of higher
level MPI functions promises better performance for novices [1].”

Michael O. McCracken – “Measuring & Modeling HPC User
Productivity: Whole-Experiment Turnaround Time
This presentation described work conducted by Michael O.
McCracken, Nicole Walter, and Allan Snavely at the University of
California, San Diego and the San Diego Supercomputer Center on
providing decision-support to scientists for improving turnaround
time. They discuss a problematic trend that existing measure of
productivity (i.e. FLOPs) are not providing adequate insight into
the real bottlenecks experienced by scientists. They propose an
approach for eliciting workflow information from scientists and
building workflow model simulations, which can be executed to
answer various “what-if” questions when balancing trade-offs in
planning their code execution [5].

Christine Halverson – “Was that Thinking?”
This invited presentation provided a perspective on the measure-
ment of programmer productivity from a social scientist working
with IBM. IBM has conducted a series of productivity studies us-
ing both automatically collected data and observational data. An
important, and difficult, issue is finding the right balance between
the two types of data to provide the necessary insight into the ac-
tivities being studied. One interesting question, that prompted the
title of the presentation, is: when the automatically collected data
indicates that the user was idle, were they “thinking” about how to
solve the problem, or were they taking some type of a break? The
main issues raised during this presentation focused on a challenge
to researchers to gain a better understanding of what it is they are
really trying to measure, and of the accuracy of the methods being
used to perform the measurement. A concluding question that re-
searchers in this area must consider is: “Can we build studies that
combine automated and observational data and determine patterns
of behavior to better make inferences?”

Jeremy Kepner – “Quantitative Productivity Measurements
in an HPC Environment”
This invited presentation discussed work performed by Jeremy
Kepner, Bob Bond, Andy Funk, Andy McCabe, Julie Mullen, and
Albert Reuther at MIT’s Lincoln Laboratory on assessing the pro-
ductivity of HPC systems. The discussion focused on how to de-
fine and measure productivity, Using Lincoln Lab’s LLGrid

ACM SIGSOFT Software Engineering Notes Page 39 September 2007 Volume 32 Number 5

http://www.cse.msstate.edu/%7ESEHPC07/

system as an illustrative case study. These researchers define pro-
ductivity as “utility over cost.” Using this information, a Return
on Investment figure can be calculated to better understand the
value that an HPC center is getting from its supercomputer. The
cost variable includes multiple constituent parts: 1) time to paral-
lelize a code, 2) time to train the users, 3) time to launch the code
on the supercomputer, 4) time to administer the supercomputer,
and 5) cost of the system. Kepner suggested that LLGrid’s Matlab-
based, interactive HPC system has dramatically increased usage
and productivity over the C/Fortran-based batch queued systems
commonly found at other HPC centers.

David Hudak – “Developing a Computational Science IDE
for HPC”
This presentation described work performed by David Hudak, Neil
Ludban, Vijay Gadepally, and Ashok Krishnamurthy from the
Ohio Supercomputing Center on the benefits developers obtain by
using integrated development environments (IDEs) instead of a
collection of unrelated tools. The needs of HPC developers require
a different type of IDE than traditional software developers. In
particular, HPC developers need to perform remote, interactive
services. Some of the challenges in designing a successful IDE are
the result of the observation that the HPC developers often do not
consider themselves to be programmers. So, while the concept of
an IDE is appealing to this community, the implementation still
needs refinement [4].

Michael A. Heroux – “The Trillinos Software Lifecycle Model”
This presentation described work performed by James M. Willen-
bring, Michael A. Heroux, and Robert T. Heaphy from Sandia
National Laboratories on a proposed lifecycle model for HPC li-
braries. This work was motivated by the observation that while a
lot of work was being done on projects that could be considered
similar, very little reuse or coordination was occurring among
them. As a result, the Trillinos lifecycle was developed to facilitate
the design, development, integration and support of mathematical
solver libraries. Because no single development model can address
all of the needs of these developers, the Trillinos project is an ap-
proach that provides the flexibility to allow projects to move
among different levels of maturity, each requiring different
amounts of software engineering rigor. The concepts of software
quality assurance and software quality engineering are important
and integral at all stages of the process. A notable aspect of this
lifecycle is an initial “Research” phase, which has no equivalent in
traditional software engineering lifecycle models [7].

Discussion
After the presentations, a short discussion session followed that
focused on the question: “How is Software Engineering in a re-
search environment different from Software Engineering in a more
traditional environment?” This question was motivated by a reoc-
curring theme that appeared during the earlier presentations. The
members of the HPC community do not see value in many of the
traditional software engineering concepts. Further discussion indi-
cated that much of the reason for this different view of software
engineering had to do with the motivation for writing software.
Thus, it was important to further discuss the effects of writing
software in a research environment. The starting point for this dis-
cussion, and one of the main contributions, was to define the dif-

ference between a “research” environment and a more traditional
environment. There were two main types of differences discussed:
differences in the overall plan and differences in the people in-
volved. Finally, there was a discussion of the potential similarities
between research environments and a subset of the more tradi-
tional environments. Each of these topics is discussed in more de-
tail in the sub-sections that follow.

Research Plan vs. Business Plan
In research projects the teams tend to have a “research plan” as
opposed to a “business plan”, which a more traditional project
would have. In a business plan, the focus is normally on how to
make the best use of the available resources, including technical
personnel like software engineers, to be financially successful. The
decisions related to planning tasks and allocating personnel to
those tasks are all driven by this underlying goal. Conversely, in a
research plan, the focus is on obtaining new knowledge that will
benefit the larger scientific community. Therefore, the process
drivers may be quite different from those that would be derived
from a business plan. In a research plan, the goal is discovery of
new knowledge, so it is to be expected that requirements or even
the scope of the project will evolve as more knowledge is gained.
This flexibility of requirements may not be so common or viewed
as positively in cases where the process is driven by a business
plan. Finally, research plans account for the fact that research pro-
jects are inherently more risky than other types of projects. By
definition, research is the investigation of something unknown, so
there is always the risk that the software project could completely
fail due to reasons external to the software itself. Projects that are
driven by a business plan do not tend to face these same types of
risks.

Personnel differences
The discussion suggested that different types of people are in-
volved in HPC projects than in more traditional software devel-
opment projects. It is common for the developers of HPC software
to also be the users of that software. This situation is less common
in other domains like information technology. The implication of
this situation is that developers may not feel the need to use good
software engineering principles because they know that if a prob-
lem arises during software use, they can just fix the problem. A
second people-related problem is that people who are highly
knowledgeable in the domain are usually not the same people who
are experienced, and trained, software engineers. This situation
results from the common belief that it is easier to teach software
development to domain experts (i.e. scientists and engineers) than
it is to teach the complex domain concepts to a software engineer.

Similarities between Research Environment and Traditional
Environments
During the discussion, the focus shifted to trying to determine
what subset of more traditional software engineering projects may
be similar to research projects. This portion of the discussion
posed more questions than it answered, which fed into the Re-
search Agenda described in the Summary. The first idea was that
certain types of internal software projects may be similar to re-
search projects. Internal projects are those that are developed sole-
ly to be used in-house and not to be sold. Some of the similarities
between these types of projects and research projects include: 1)
planning may be more like a research plan than a business plan as

ACM SIGSOFT Software Engineering Notes Page 40 September 2007 Volume 32 Number 5

the requirements may shift often based on the needs of the organi-
zation; and 2) the user base will likely be made up of those that
that are also developers of the software rather than external users.
Another area where similarity may be found is in the area of risk.
One interesting question that arose during the discussion was
whether there are any groups of developers that are using the tradi-
tional software engineering methods to write high-risk software.
This environment in which this software is written should be simi-
lar to the environment needed for research projects. In this case, a
high-risk project is one in which the developers are unsure, a pri-
ori, if the requirements are feasible, tractable or even possible.

Breakout Groups
After listening to the presentations and discussion, the last activity
in the workshop was to divide up into breakout groups to further
discuss the issues. The goal of the breakout group session was to
distill the information heard throughout the day into some concrete
recommendations that could feed into a research agenda. Because
the workshop participants came from two distinct backgrounds,
software engineering and high performance computing, two brea-
kout groups were created using this division. Each group was pro-
vided with a series of questions to address. The session concluded
with a plenary discussion where each breakout group presented
their results. The goal was to understand the similarities and dif-
ferences in the views of the researchers from the two groups and
arrive at a research agenda for the future. The results of each
groups’ discussion are presented in the following sub-sections.

High Performance Computing Group
The High Performance Computing group consisted of Christine
Halverson, Michael Heroux, David Houdak, Jeremy Kepner, and
Michael McCracken. This group addressed three questions as de-
scribed below.

What are some software engineering techniques that have
worked in the past?
The group identified a number if techniques that have been suc-
cessful. While presenting this information, additional points were
added by the entire group during the discussion. The first two top-
ics identified were Performance Risk Analysis and Source Man-
agement. These two topics encouraged little discussion.

The group agreed that there are a lot of things that the software
engineering community has produced that are practical and useful.
The HPC developers would like these practices to be viewed like a
buffet, where they can take what they would like and leave the rest
behind. An example of the type of practices that are easy to pick
and choose what works as well and are fairly easy to embrace are
the Agile methods. On the other hand, this buffet approach is
counter to the recommendations made by Kent Beck in his book
on eXtreme Programming (XP). He believes, although it is only a
hypothesis, that while some benefit can be gained by using only
some of the individual practices, the majority of the benefit of XP
comes when all the practices are used together [2].

For example, pair-programming has been useful in some situa-
tions. The HPC developers have not, and likely will not, adopt it
universally, but it has been useful for training new developers.
Also, when working on a very complex portion of the software,
HPC developers have found pair-programming to be very useful.
A second agile practice that has found some acceptance is the test-

first approach. Anecdotal evidence from the workshop attendees
indicated that once HPC developers adopt this practice, it is diffi-
cult to get them to give it up. Conversely, one member of the
group reported some difficulties with motivating software engi-
neering undergraduate students to use the test-first approach on
their projects. Other agile methods that were mentioned as promis-
ing and well-suited to the HPC domain are: tight customer interac-
tion and highly technical programming.

Another approach that has been beneficial is the creation of
frameworks that abstract away the platform-specific information
(the parallel machine). These frameworks have been more success-
ful when they were domain-specific. Finally, the traditional, prov-
en software engineering technique of code reviews were found to
be helpful.

What are some things the HPC community does not need from
software engineers?
There were some lessons learned from development for computa-
tional grids that motivated the list of items that are not needed by
the HPC community. First, the idea of a BDUF (big design up-
front) is not a good fit for the nature of the HPC domain. The
BDUF approach does not work well if the core technical risks
have not been mitigated. In addition, doing the software engineer-
ing correctly (e.g. requirements, OO design, …) can be worse than
just being useless in the face of design changes. This situation is
one of the drivers for leaning towards agile methodologies. Full-
blown lifecycle models were also seen as problematic, because the
developers, and customers, are not willing to wait long enough for
these processes to complete. Furthermore, the funding for most of
these projects comes from the government, who wants to be able
to clearly track progress and see how the spending directly trans-
lates into functionality. This mindset makes the use of heavy-
weight processes difficult and unlikely.

What do you most need from software engineering
researchers?
The experience of the HPC community with software engineering
principles has been mixed. On the one hand, there have been some
extremely successful large HPC projects that had not adopted
identifiable SE practices. On the other hand, they recognize that
failure to adopt good SE principles does hinder development. One
member of the group told an anecdote of a computational scientist
who needed help improving the performance of a finite-element
code. However, the code was so poorly structured that the HPC
consultants could not understand it, and therefore could not help
the scientist.

The HPC group identified a set of high-priority items that they
would like from software engineering researchers. First, they sug-
gested a number of process and method improvements. Perform-
ance has to be influential in the design process. It is important for
software engineers to realize, and develop methods, that help HPC
developers design for performance from the beginning. The con-
siderations of performance must come before those of functional-
ity, because it is difficult or impossible to retrofit the software for
performance. HPC developers also need help from software engi-
neers when it comes to software architecture. The general practice
in HPC development is to come up with a first version of the ar-
chitecture that is too simple, followed by a second version that is
too complex, followed finally by a third version that is just right.
Another frustration faced by HPC developers is that they are re-

ACM SIGSOFT Software Engineering Notes Page 41 September 2007 Volume 32 Number 5

quired by managers to use standard software engineering lifecycle
models, even when they do not fit in their environment. The HPC
developers would really value some “expert testimony” from soft-
ware engineering experts to support the argument they must make
to their managers that many of these lifecycle models really do not
fit the HPC domain. For example, HPC projects are often required
to follow CMM guidelines when the projects do not match well to
the requirements for such a process. The newer CMMi has helped
with this problem, but it is still an issue.

Second, a set of tools was enumerated. In general, tools were re-
quested to accommodate lightweight documentation, correctness
testing, and aid in design software for testability. Those tools
should also be designed to be used by scientists rather than soft-
ware engineers. Examples of such tools can be found on the Sour-
ceforge website. The Eclipse development environment also has
some of these tools, but the consensus was that it was too heavy to
be usable in many HPC settings. There was also the view that the
Matlab debugger and editor were too heavy. They provide an in-
terface to an enormous backend, so it feels like trying to “pull in-
formation through a soda straw”. One last issue, is that many of
these tools are designed for PCs and Windows, rather than
Unix/Linux environments in which many of these developers
work.

Finally, HPC researchers wish that when working with HPC de-
velopers software engineers would follow the processes they pro-
mote. For example, many from the HPC domain had experienced
the situation in which a software engineer arrives with what they
believe to be the solution/approach/tool/method that will save the
day. The only problem is that often that software engineer has not
invested the time to first collect the requirements of the system
they trying to help (to identify what the real problem is and what
solutions may not be feasible) before designing the solution. If
software engineers would spend more time listening to HPC de-
velopers and understanding their real problems and the constraints
of their development environments, they can likely arrive at better
recommendations.

Software Engineering Group
The Software Engineering group consisted of Rola Alameh, Ed-
ward Allen, Jeffrey Carver, Mikhail Chalabine, Lulu He, and Lo-
rin Hochstein. This group was addressed three questions as
described below. Following-up on the earlier discussion differenti-
ating research projects from other types of projects, the software
engineering group began by making a distinction that provided
context for the rest of their discussion. This group limited their
discussion to projects from the computational science community.
These projects were defined as being focused on conducting sci-
ence or gaining new knowledge and typically written for large
machines. Projects that were not addressed were those from the
business community. These projects were defined as being focused
on making money and increasing their customer base and typically
written for smaller machines.

What are the top things that the software engineering
community has to offer the HPC community?
The main contribution that the software engineers thought they
could make to the HPC community was to find cases where Com-
putational Science and other HPC projects had successfully used
good software engineering practices, and communicate those suc-

cesses to the broader community. The groups that have good soft-
ware engineering practices (e.g. version control, regression testing,
and inspections) have mostly learned them the hard way (i.e. they
were passed down by previous team members). So, they only use
good processes if they happen to have been on a project that used
them in the past. There are a series of effective, elementary prac-
tices which require only a small amount of effort to implement.
Beginning with some of these practices is safe way to begin inter-
acting with HPC projects and also to remove a boundary to HPC
use (i.e. people avoid HPC programming because of the perceived
difficulty). Some examples of these practices are: version control,
unit testing, and regression testing.

Another area in which software engineers can contribute is in the
software architecture and design areas. Software engineers under-
stand the need to design software to account for attributes like
maintainability and portability in addition to functionality and per-
formance. Making concepts like component-based software engi-
neering accessible to the HPC community by providing libraries
and compilers would be a great contribution. Finally, taking the
knowledge of how to use middleware and applying to simplify
access to grids would be helpful.

What are some problems or frustrations you have had in
trying to work with the HPC community or the research
domain?
One of the main frustrations that software engineering researchers
have faced has been the different focus that the HPC developers
have. In general, the software developed for HPC applications is
treated more like a secondary tool, with the focus being on the
scientific paper that can be published with the results. Therefore,
the software is often thrown away and not valued as an asset like it
might be in the IT sector. Furthermore, the two communities have
different views of the real problems with software development.
For example, software engineers focus a lot of time and energy on
quality assurance mechanisms, while many of these are largely
ignored in the HPC community.

A second set of frustrations concerns the cultural divide between
software engineers and HPC developers. It is common for software
engineers to face the complaint from HPC developers that they are
“just imposing more process on us”, rather than just “letting us
write our algorithms.” In addition, there is the view that because
software engineers do not understand the real problems, the HPC
developers do not see the benefit of listening to them. This prob-
lem is worsened because there are many HPC projects that succeed
without using formal software engineering (because of the small
size or the presence of smart people) so they do not see the need
for formal software engineering. But, often these projects are not
followed through to the maintenance phase where the lack of for-
mality really becomes an issue. One of the reasons for this divide
is that software engineers are not always given access to enough
HPC projects to allow them to understand what works and what
does not. This is especially true for those projects that are not suc-
cessful. One important way that software engineers learn is
through the analysis of failures.

What are some things that software engineers would like to
offer to the HPC community, but we cannot yet?
Understanding the differences between research projects and more
traditional software projects, an import goal for the software engi-
neering researchers is to offer a valid software lifecycle for re-

ACM SIGSOFT Software Engineering Notes Page 42 September 2007 Volume 32 Number 5

search projects. One issue that must be overcome by the software
engineering researchers is that they often lack a deep understand-
ing of how to actually write the HPC software. The software engi-
neering researchers also see the need to provide more evidence to
show which methods and tools work in which situations and which
do not. This evidence needs to be as quantitative as possible, be-
cause pure anecdotal evidence does not carry much weight in the
HPC community. So, in addition to offering the buffet of methods,
software engineers need to offer sound advice on when to choose
each option. One proposal for such a lifecycle is that the domain
experts develop a version of the code that is then optimized by a
software engineer who is an expert in parallelization. The process
will need to provide for the verification and validation of the opti-
mized code to ensure that the science or engineering embodied in
the code is not altered by the optimization.

Summary and Road Ahead
This workshop brought together experienced software engineering
researchers and experience HPC Application researchers and de-
velopers to share their experiences and discuss common issues.
The workshop produced two important outcomes that affect future
research.

1. The members of the HPC community agreed that identifying
and articulating the need for a software lifecycle and tool set
specifically tailored to research projects made the workshop
successful.

2. Researchers need to examine other types of software devel-
opment that has similar characteristics to HPC development to
determine which approaches can be borrowed and tailored for
HPC development. Some types of software that should be ex-
amined include:
a. Internal projects (i.e. those projects that are developed for

in-house use rather than for commercialization) that often
provide tool support for developers working on commer-
cial software. Because these projects are created to sup-
port a particular user group, who often take part in their
development, they have to deal with changing require-
ments as new needs are identified and there is a large
overlap between the users and the developers of the soft-
ware. These two characteristics suggest that techniques
and methods that have been found to be useful on internal
projects have the potential to be successful on HPC pro-
jects.

b. High-risk software – These projects have a risk of failure
that higher than for other types of software (e.g. software
using a new development paradigm, software for a new
domain, software with an uncertain market or software
with an undefined customer base). This increased risk
should lead these projects to choose lifecycle models and
development approaches that help mitigate the risk. The
HPC applications face similar types of risk because they
are exploring unanswered scientific questions and may
simply fail due to incorrect assumptions about nature.
Any risk-mitigation techniques that have been found to be
useful should be investigated for use on HPC projects.

This workshop was educational and useful for members of both
communities represented, software engineering and high perform-
ance computing developers and researchers. The interesting dis-
cussion, captured in this report, highlighted both the similarities

and differences of the software development approaches taken by
the two groups. As a result of this workshop, the software engi-
neering researchers have a better understanding of the problems
faced by members of the HPC community and the members of the
HPC community have a better understanding of the types of exper-
tise and support that software engineering can provide them. These
mutual understandings should set the stage for future collabora-
tions between software engineering researchers and HPC research-
ers and developers.

Acknowledgements
Special thanks to Lorin Hochstein for taking detailed notes during
the discussion and providing editorial feedback on early versions
of this report.

References
[1] Alameh, R., Zazworka, N., and Hollingsworth, J.K., Beyond

Performance Tools: Measuring and Modeling Productivity in
HPC, in SE-HPC 2007 (Held at ICSE 2007). 2007: Minneapo-
lis, MN.

[2] Beck, K., Extreme Programming Explained: Embrace Change.
2000, Reading, MA: Addison-Wesley.

[3] Gorton, I., Chavarria-Miranda, D., Krishnan, M., and Nieplo-
cha, J., A High Performance Event Service for HPC Applica-
tions, in SE-HPC 2007 (Held at ICSE 2007). 2007:
Minneapolis, MN.

[4] Hudak, D.E., Ludban, N., Gadepally, V., and Krishnamurthy,
A., Developing and Computational Science IDE for HPC Sys-
tems, in SE-HPC 2007 (Held at ICSE 2007). 2007: Minneapo-
lis, MN.

[5] McCracken, M.O., Wolter, N., and Snavely, A., Beyond Per-
formance Tools: Measuring and Modeling Productivity in
HPC, in SE-HPC 2007 (Held at ICSE 2007). 2007: Minneapo-
lis, MN.

[6] Panas, T., Quinlan, D., and Vuduc, R., Tool Support for In-
specting the Code Quality of HPC Applications, in SE-HPC
2007 (Held at ICSE 2007). 2007: Minneapolis, MS.

[7] Willenbring, J.M., Heroux, M.A., and Heaphy, R.T., The
Trillinos Software Lifecycle Model, in SE-HPC 2007 (Held at
ICSE 2007). 2007: Minneapolis, MN.

ACM SIGSOFT Software Engineering Notes Page 43 September 2007 Volume 32 Number 5

