
Understanding the Impressions, Motivations, and
Barriers of One Time Code Contributors to FLOSS

Projects: A Survey
Amanda Lee and Jeffrey C. Carver

Computer Science Department
University of Alabama
Tuscaloosa, AL USA

aslee1@crimson.ua.edu; carver@cs.ua.edu

Amiangshu Bosu
Department of Computer Science

Southern Illinois University
Carbondale, IL USA

abosu@cs.siu.edu

Abstract—Successful Free/Libre Open Source Software
(FLOSS) projects must attract and retain high-quality talent.
Researchers have invested considerable effort in the study of
core and peripheral FLOSS developers. To this point, one critical
subset of developers that have not been studied are One-Time
code Contributors (OTC) – those that have had exactly one patch
accepted. To understand why OTCs have not contributed another
patch and provide guidance to FLOSS projects on retaining
OTCs, this study seeks to understand the impressions, motiva-
tions, and barriers experienced by OTCs. We conducted an online
survey of OTCs from 23 popular FLOSS projects. Based on the
184 responses received, we observed that OTCs generally have
positive impressions of their FLOSS project and are driven by a
variety of motivations. Most OTCs primarily made contributions
to fix bugs that impeded their work and did not plan on becoming
long term contributors. Furthermore, OTCs encounter a number
of barriers that prevent them from continuing to contribute to the
project. Based on our findings, there are some concrete actions
FLOSS projects can take to increase the chances of converting
OTCs into long-term contributors.

Index Terms—FLOSS, Open source, OSS, Newcomers, One
Time Contributors, Survey, Qualitative Research

I. INTRODUCTION

For Free / Libre Open Source Software (FLOSS) projects
to survive, they must attract and, more importantly, retain new
contributors [8]. Popular FLOSS projects (e.g., Apache, Linux,
and Android) are able to attract plenty of motivated volun-
teers [15], [18], [26]. However, many of the project newcomers
lack the necessary domain knowledge and programming skills
to author acceptable code changes [23], [26]. Prior research
on identifying and removing the barriers faced by newcomers
to FLOSS projects found that newcomers require additional
assistance and may turn away if ignored or treated poorly [14],
[20], [24], [28]. Therefore, members of FLOSS projects should
take care to ensure that they provide this additional support to
those newcomers who have the greatest potential to join the
project and become long-term contributors.

Researchers often characterize the structure of FLOSS de-
velopment communities as core and periphery, with a small
number of core developers and a larger number of peripheral
developers [9], [19], [30]. The core developers are those who

have been involved with the FLOSS project for a relatively
long time and make significant contributions to guide the
development and evolution of the project [30]. The peripheral
developers are those that occasionally contribute to the project
(e.g. via bug reports or mailing list participation) [30], mostly
fix bugs, and do not contribute much in the way of new
features [21]. Successful FLOSS projects must attract and
retain these peripheral developers so they can provide more
significant code contributions.

We define a One-Time code Contributor (OTC) to a FLOSS
project as a peripheral developer who has had exactly one
code contribution (i.e. a patch) accepted in that project. While
OTCs might also interact with the project via the mailing lists
or by reporting bugs, they have successfully contributed only
one patch to the project. Other peripheral developers who
make single contributions in the form of mailing list posts
or comments in the bug review tool are not OTCs. The fact
that OTCs have an accepted code contribution indicates that
they have generally invested more effort than other peripheral
developers [21].

Prior work in this area has examined the motivations
of core developers [1], [18], [22], [30] and of peripheral
developers [21]. A recent study by Pinto et al. noted the
perceptions and characteristics of the contributions by casual
contributors, which includes OTCs as well as other peripheral
developers [20]. These previous studies have not addressed the
motivations of OTCs specifically nor identified the important
barriers they face in contributing to FLOSS. FLOSS projects
could see great benefit from capitalizing upon the initial con-
nection between OTCs and the project by better understanding
OTCs’ motivations and removing their barriers. In addition,
OTCs can provide insights into why some FLOSS contributors
choose to leave a project, even after successfully contributing
code to that project. Therefore, the goal of this study is to
understand the impressions, the motivations, and the barriers
of OTCs in FLOSS projects. This understanding can help the
leaders of FLOSS projects identify approaches to encourage
OTCs to form longer-term connections to the project.

To address this goal, we sent an online survey to 4,127

OTCs gathered via mining the code review repositories of 23
popular FLOSS projects. The survey received 184 responses
from OTCs. Multiple coders systematically analyzed the open-
ended responses using an Open Coding approach to understand
the perceptions of OTCs during their interaction with the
FLOSS project. The coding process consistently achieved high
inter-rater reliability.

The primary contributions of this study are:
• A better understanding of OTCs’ impressions, motiva-

tions, and barriers.
• Identification of a particular set of FLOSS participants

that require more attention.
• Concrete recommendations to FLOSS projects regarding

how to retain OTCs.
The rest of the paper is organized as follows. Section II

describes the research questions. Section III describes the
research methodology. Section IV characterizes the study par-
ticipants. Section V provides the results. Section VI discusses
the implications of the results. Section VII addresses the
threats to validity. Finally, Section VIII concludes the paper.

II. RESEARCH QUESTIONS

This section discusses related work and expands the overall
research goal into four more specific research questions which,
in turn, drive the survey design.

A. Impressions

While FLOSS peripheral and core developers have different
roles and functions, they frequently interact with each other,
though usually virtually. Specifically, peripheral and core
developers often have a high degree of communication [1].
These interactions provide the opportunity for these developers
to form impressions of each other. A common type of inter-
action is for peripheral developers to identify bugs that core
developers then fix [21]. The relationship between core and
peripheral developers is a symbiotic one [22]. Core developers
depend on peripheral developers to find the bugs. Peripheral
developers depend on core developers to fix those bugs.

These types of interactions suggest that developers’
impressions of each other can be vital to whether a peripheral
member continues to contribute to the project. If a peripheral
developer dislikes project members or if she is treated rudely
by them, she is less likely to remain with the project [3],
[24]. Moreover, a good impression of a project can motivate
a potential contributor to make her first contribution [26].
Extrapolating these observations to OTCs suggests that OTCs’
impressions may be a key factor in continued participation.
To better understand the types of impressions OTCs have of
their project, the first research question is:

RQ1: What kind of impressions do One-Time Contributors
form about their fellow contributors?

B. Motivation

Various FLOSS contributors may have different motiva-
tions for participating in a FLOSS project. Understanding

these motivations can provide additional insights to FLOSS
projects that wish to attract additional participants. One way
to categorize the motivations is need-based – need code
for work or home or need to give back to the community
vs. hobbyists [22]. A slight expansion of this dichotomy
divides need-based contributors into those whose needs are
employment-based – need the code for work or are paid
to contribute, need-based – use the software personally, or
reciprocation-based – have a desire to give back to the
community [18]. Those who are hobbyists may be motivated
either by the desire to improve their skills [18] or because
they are already quite skilled and enjoy participating in such
projects [22]. While peripheral developers can be hobbyists,
peripheral developers are usually need-based contributors [21].

Another perspective from which researchers view motiva-
tion is intrinsic – driven to contribute by something internal
vs. extrinsic – driven to contribute by something external.
Most peripheral developers are extrinsically motivated. Spe-
cific extrinsic motivations include personal or work use, being
paid by an employer, an increase in personal reputation, or the
desire for a new feature. The lone intrinsic motivation common
among peripheral developers is a sense of reciprocity, which
is either a desire to give back and foster future contributors or
a perceived social obligation to the project [18], [21], [22].

Therefore, OTCs might be expected to share attributes with
other peripheral, need-based contributors, and perhaps be
motivated by the same goals, such as fixing bugs or enhancing
personal reputation. With a greater understanding of OTCs’
motivations, FLOSS communities will be better informed
on how to retain them, and potentially other peripheral
developers, in the project longer. This observation leads to
the second research question:

RQ2: What motivations drive One-Time Contributors to
contribute?

C. Barriers

The process of joining a FLOSS project can be daunting.
Developers have to understand the submission process, inter-
pret semi-automated rejection messages, and handle other dif-
ficulties. Researchers have studied this process to identify the
barriers commonly faced by individuals who wish to become
project members. Steinmacher et al. identified 48 barriers
faced by developers when making their first contribution to a
FLOSS project. These barriers include: being ignored, trouble
deciphering the source code, finding a bug, and even the
process of submitting the contribution [24]. Several of these
contribution barriers were corroborated in other studies, such
as being ignored [17], finding a bug [27], and developing tests
for the patch [29].

Difficulties can also arise from from dealing with the
project’s often proprietary environment and a lack of knowl-
edge of the project’s programming language [14], [26], [29].
The project’s infrastructure can also pose a barrier. Newcomers
will not have much knowledge of how the project is set
up, or might choose to fix what turns out to be a larger or

more difficult issue than they anticipated. Both the process of
coding a patch and the process of submitting a patch can pose
barriers [26].

In addition, projects typically do not make these barriers
known to potential contributors. Specifically, newcomers have
to learn the social structure of the project and the organization
of the codebase on their own [10].

We can consider an OTC to be a successful newcomer
because they have already had a code contribution accepted
into the project’s codebase. These OTCs likely faced some
of the same barriers described above, but somehow overcame
them to be successful. How the OTCs view these barriers is
important information that can help FLOSS projects who wish
to convert OTCs into longer-term contributors. Therefore, the
third research question is:

RQ3: What barriers do One-Time Contributors face which
prevent them from continuing to contribute?

Conversely, there may be times when an OTC’s lack of
further contribution is not due to any specific barriers. Zhou
and Mockus found that a newcomer’s personal motivation
significantly affected the chance that s/he stayed with the
project for many patches [31]. The natural cycle for most
FLOSS developers, whether core or periphery, is to leave
the project within a year of joining [22]. It may be that
OTCs simply leave the project earlier than other developers.
If OTCs are not motivated to submit additional patches, or
find it natural to leave after a single patch, there is little that
projects can do to retain these developers. Projects should not
focus any additional resources on attempting to recruit them.
Therefore, the fourth research question is:

RQ4: If no barriers stand in the way of One-Time
Contributors, why do they choose to leave after a single
patch?

III. METHODOLOGY

Based on the four research questions, which are geared
towards gathering the opinions of members of a population,
and the fact that there is little prior research about OTCs, we
chose a survey as our research approach. Using the research
questions and prior results about peripheral developers in
general as a guide, we constructed a survey containing quali-
tative and quantitative questions. The remainder of this section
describes the survey design, the participant selection criteria,
pilot testing, data collection, and qualitative data analysis.

A. Survey

Our goal in designing the survey was to keep it as short as
possible, while still gathering all of the relevant information.
For the current paper, we only consider a subset of the survey
questions. Table I lists each survey question included in this
paper, the research question that motivated its inclusion, and
the answer choices provided. Note that questions indicated

with a ‘D,’ rather than a ‘RQ#’ were included to gather de-
mographics about the respondents. For the questions that were
open-ended, there are no specified answer choices. Several of
the questions were inspired by previous surveys [3], [24].

B. Participant Selection

In a previous study about peer impressions in code re-
view [6], we mined data from 23 popular FLOSS projects
that used the Gerrit code review tool. This dataset was ideal
for reuse in the current study for the following reasons:

• The projects were diverse, including participants with
varied backgrounds, interests, and goals.

• The projects were all mature, with hundreds of developers
and products available for download.

• The projects required every submitted patch to undergo
mandatory peer code review, requiring each OTC to
interact with project members at least once to get the
patch accepted.

• The projects’ repositories contain details about each
patch, including the email address of the submitter.

We analyzed this dataset to identify participants who had
only one successful code contribution to a given project.
This analysis identified 4,587 individuals. Following a process
similar to Bird et al.’s [2], we manually audited this list to
ensure that it contained only people who were truly OTCs.
We performed identity matching to eliminate anyone who
had multiple accounts and had patches accepted from more
than one account. To improve the validity of our sample, if
we were uncertain whether a person had multiple accounts,
we eliminated them. Our study stood to suffer more from
mistakenly including people who were not OTCs than from
mistakenly excluding someone who was an OTC. In the rare
case where the same individual was an OTC in multiple
projects, we kept them in the study because they were still
an OTC in each project. This process resulted in 4,127 unique
individuals that were candidates for the survey.

C. Pilot Survey

To help ensure the validity of the survey, we asked Com-
puter Science professors and graduate students with experience
in FLOSS and experience in survey design to review the survey
to ensure the questions were clear and complete. The feedback
only suggested minor edits. The changes we made include:
changing a question from allowing only a single-answer to
allowing multiple answers, changing the granularity of the
sliding bars, and clarifying the wording of some questions.

D. Data Collection

We sent each of the 4,127 OTCs in our database a per-
sonalized email identifying the project with which the OTC
was connected with a link to the survey. Approximately 600
of those emails bounced, leaving at most 3,500 potential
participants, assuming all other emails actually reached their
intended recipient. From the 350 that started the survey, 187
completed it. We only analyzed the responses from those that
completed the survey and answered at least one qualitative

TABLE I
SURVEY QUESTIONS

RQ* Question Text Answer Choices
Q1 D Have you contributed to other FLOSS projects? [yes, no]
Q2 D How many other FLOSS projects have you contributed to? [#]
Q3 D Estimate the total number of patches you have contributed to all FLOSS projects [#]
Q4 D What is your highest level of experience in the field of software development/engineering? [none, hobbyist, student, professional]

Q5, Q6, and Q7 only appeared based on the answer to Q5
Q5 D What type of student are you currently? [high school; undergrad college, studying CS

or related; undergrad college, studying unre-
lated; grad school, studying CS or related; grad
school, studying unrelated; grad school, study-
ing unrelated with undergrad in CS or related]

Q6 D How many years have you been employed as a software engineer/developer? [1-3, 4-6, 7-9, 10+]
Q7 D How would you describe your level of software engineering/development ability? [high school, took some in college, took some

in grad school, retired professional, learned at
job, self taught]

Q8 D Do you interact with the project outside of the code reviews? If so, how? [mailing list, code review database,
forum/message board, rss feed, bug repository,
other, I do not interact outside of code reviews]

Q9 RQ1 What was your initial impression of the other project members?
Q10 RQ1 What did you think of the other project members’ code review responses? [sliding bar, 1-7]
Q11 RQ2 What motivated you to contribute your patch?
Q12 D Are you, or were you, being paid to contribute to this project? [yes, no]
Q13 D OPTIONAL: Please list the company that paid you to contribute. Feel free to leave blank.
Q14 RQ3 How difficult was it to create and submit patches, compared to your previous experiences with

FLOSS?
[2 sliding bars, 1-7, one labeled creation, one
labeled submission]

Q15 RQ3 Was patch creation or submission hard enough you would not do it again? [yes, no]
Q16 RQ3 Was patch creation or submission the difficult one, or were both? What was most difficult about

them?
Q17 RQ3,

RQ4
Were there any barriers or reasons that kept you from continuing to contribute? If so, please
list them below.

*numbers refer to the research question that motivated the inclusion of the survey question, ‘D’ refers to demographic questions

question. We had to exclude 13 respondents because they
did not qualify as OTCs (i.e. their patch had been rejected
instead of accepted), leaving 174 responses for analysis. As
the qualitative questions were optional, some respondents did
not provide answers to all of those questions. In this case,
we were still able to analyze their responses to the qualitative
questions they did answer to gain insight into the respective
research questions.

E. Qualitative Analysis Process

For the open-ended questions, we did not have an existing
set of codes from which to begin, due to the novelty of the
topic. To prevent any initial biasing of the results, we used an
Open Coding approach to let the coding scheme emerge during
the analysis [13], [25]. Because we were using open coding,
we chose to perform the coding in three phases, checking
for consistency after each phase. We used Nvivo1 to support
the coding process. At each phase, we computed Cohen’s
kappa [7] to measure the level of inter-rater reliability in the
coding process.

First, each author independently coded the first 30 responses
to each question. As a result, each author developed his/her
own set of codes to describe the themes that emerged. After
meeting to discuss the resulting codes and agreeing upon a
consistent coding scheme, each author recoded the first 30
responses using those codes. The resulting kappa value was

1Nvivo http://www.qsrinternational.com/nvivo-product

0.3792. The authors met and resolved all discrepancies and
gained a better understanding of the coding scheme. Second, to
check the consistency of understanding of the coding scheme,
each author independently coded the next 50 responses, only
adding new codes when necessary. The resulting kappa for
these 50 responses was 0.7669. Again, the authors met to
compare results and resolve any discrepancies. Finally, be-
cause the coding scheme was now well-understood, each
author independently coded the remainder of the responses.
The resulting kappa for the remaining responses was 0.7767.
The authors met again to resolve any discrepancies. In the
end, all authors agreed on all codings2 Once we completed
the coding process, we transferred the data into SPSS3 for
further analysis along with the quantitative data.

While there is no universally accepted ’good’ kappa, val-
ues of .75 and up are generally recognized as exceptional
scores [11], [16]. The first kappa was low because the two
coders were still finalizing the coding scheme. Conversely,
the last two kappa values, which cover the bulk of the data,
fell into the exceptional range. This high level of inter-rater
reliability result indicates that the coding scheme is valid and
consistently describes the data.

IV. DEMOGRAPHICS

To provide context for the results described in Section V,
this section characterizes the projects from which the re-

2Full coding scheme: http://carver.cs.ua.edu/Data/2017/ICSE 2017/
3http://www.ibm.com/analytics/us/en/technology/spss/spss.html

spondents were drawn, the level of experience of the survey
respondents (both in Computer Science, generally, and in
FLOSS, specifically), whether the respondents were paid to
contribute, and the types of interactions the respondents had
with the project.

Among the 23 projects from which we solicited survey re-
sponses, including Android, Qt, Cyanogen, Gerrithub, AOKP,
Openstack, and Wikimedia, the percentage of OTCs ranges
from 0.05% to 4% of the total project contributors. The
average across all projects is 0.6%. While this percentage
may seem small, due to the size of many of these FLOSS
projects even a small percentage can represent several hundred
contributors. In fact, one project has over 1000 OTCs.

The majority of the respondents were highly experienced in
computer science, with at least some work experience in the
field. The distribution of the respondents’ experience is:

• Professionals - 81%, almost 1/2 of whom have more
than 10 years experience;

• Students - 10%, almost 3/4 of whom are studying
computer science or a related field;

• Hobbyists - 8%;
• None - 1%.
Regarding FLOSS experience, the respondents exhibit a

wide range of experience. Some have very little experience;
others have very extensive experience. Approximately 1/2 have
contributed to five or fewer FLOSS projects, with the other
half contributing to more than five FLOSS projects. A small
number, 6%, contributed to only one FLOSS project. Of those
who contributed to other projects,

• 28% contributed 1 - 10 total patches;
• 28% contributed 10 - 100 total patches;
• 24% contributed 100 - 999 patches; and
• 20% contributed > 1000 patches.
In many cases, FLOSS contributors are paid by an employer

to make contributions. Often the employer’s reliance upon the
FLOSS project provides the incentive for them to pay employ-
ees to contribute. In our sample, only 26% of the respondents
were paid to contribute to their respective FLOSS project. This
percentage is lower than observed in other FLOSS studies [3],
[18], [22]. One reason for this lower percentage could be that
because these contributors are paid by an employer, they are
likely to make multiple contributions, so they will not remain
OTCs for long.

As all the FLOSS projects we surveyed practice mandatory
code review, each of the OTCs interacted with the project via
the code review tool, Gerrit. Overall, the respondents had a
significantly positive impression of the code review process
(one sample t-test p < .01). In addition, most respondents,
77%, interacted with the project outside of the code review
process. These interactions occurred most commonly in the
bug repository or the project mailing list, though they also
interacted through forums, message boards, and RSS feeds.
Several respondents indicated the use of multiple methods
of interactions. Overall, these respondents seem to be well-
connected to the projects for which they are OTCs.

No Answer

Other

Negative

Neutral

Positive

0% 10% 20% 30% 40%
Percentage of the OTCs

Fig. 1. Overall Impressions of OTCs about Project Members

Overall, these demographics show that the survey respon-
dents were generally experienced in software development,
experienced in contributing to FLOSS projects, and active in
interacting with the project in addition to patch submission.
It is unlikely that a lack of understanding of FLOSS or a
lack of development experience led to respondents remaining
OTCs. Because they were generally engaged with the projects
through additional means of interacting, there must be other
reasons why these respondents did not make other successful
code contributions. Therefore, this set of respondents should
provide valuable insights for the goals of this study.

V. RESULTS

This discussion of the results is organized around the four
research questions posed in Section II.

A. RQ1: What kind of impressions do One-Time Contributors
have about their fellow contributors?

The answer to this research question came from survey
question Q9 (see Table I). Because each response might
contain more than one impression, we coded each impression
separately. After coding each impression, we assigned each re-
sponse to one of four high-level categories. Positive responses
were those where all the impressions in the response were
positive. Likewise, negative responses were those where all the
impressions in the response were negative. Neutral responses
were those that were either truly neutral or those where there
was both a positive and a negative impression in the response.
Other responses were those that were unintelligible or did not
truly answer the question.

As Figure 1 shows, the overall tone of 2/3 of those that
responded was positive. This trend suggests that OTCs are not
dissuaded from further participation due to a poor impression
of the FLOSS project or its members. The remainder of this
section describes the results based on the specific impressions
given by the respondents, rather than the overall tone. That
is, if a neutral response has both a positive impression and a
negative impression, we considered each impression separately
under their respective analyses.

1) Positive Impressions: Respondents overwhelmingly had
a positive impression of the FLOSS project and community
members. Figure 2 shows the distribution of the impressions
among the specific positive responses given. Note that total is

Concise
Patient

Passionate
Receptive

Professional
Responsive

Helpful
Friendly

Skilled

0% 10% 20% 30%
Percentage of the Postive Responses

Fig. 2. OTCs’ Detailed Positive Impressions of Project Members

greater than 100% respondents because may have listed more
than one impression in their answer.

“Passionate experts; helpful; straight to the point; respon-
sive,” is a representative quote of the positive responses. The
positive impressions were very glowing, and often included
more than one praise. OTCs with positive impressions were
impressed by the skills of the project members and considered
them as “... experts on what they do.”.

Just over 1/4 of the OTCs found the project members
“very helpful and friendly.” For example, they were helping
the OTCs ‘‘... in polishing the patch and make it conform
the project” or “... answer even the simplest questions.”
Although the project members were willing to assist the OTCs,
they remained professional during their communications. For
example, when accepting patches they were “... demanding
perfection, for the good of the project.” Many of the OTCs
with positive impressions also found the project members re-
sponsive as they were providing “great response to questions.”

2) Negative Impressions: Accounting for a very small per-
centage of the responses, Figure 3 shows the distribution of
the specific negative impressions identified by the respondents.
As opposed to the positive responses, these responses tended
to be very negative. The respondents appeared to be greatly
displeased with the project or something specific about the
project. “Slow to respond, arrogant, bureaucratic,” as a con-
tributor commented.

In general, the unresponsiveness of the project members was
a major source of negative impressions. For example some of
the project members “.. did not post timely updates to submit-
ted issues.” However, many of the OTCs also acknowledged
that they were busy, “possibly overworked”, and did not have
“much time to try to include features from outside people.”

A few of the OTCs found the project members to be
unfriendly or not helpful as they “like to use jargon & killing
new ideas” or “tend to not let others share their expertise.” As
experts in their fields, a few project members became arrogant
and were acting “a little elitist.”

3) Skill vs. Responsiveness: Combining the top responses
for the positive impressions with the top responses for the
negative impressions provides some additional insight. Based
on the positive responses, OTCs look up to fellow project
members because of their perceived skill, friendliness, helpful-

Constrained

Elitist

Not helpful

Unfriendly

Unresponsive

Busy

0% 5% 10% 15% 20%
Percentage of the Negative Responses

Fig. 3. OTCs’ Detailed Negative Impressions of Project Members

ness, or responsiveness. From the negative responses, OTCs
had poor impressions about project members who were too
busy to interact with them or were unresponsive. The overall
sentiment of these responses is that OTCs have a more positive
view of the project when the project members are skilled and
pay attention to them.

However, the most common positive impression was skilled,
which is not related to attentiveness. Half of the respondents
who expressed this sentiment were focused purely on the
project member’s skill level, without any additional comments.
Even though they are only contributing to the project once,
OTCs value project members whom they perceive as skilled.

Despite this, the responses showed that in some cases skilled
project members were less than responsive. A comment from
one respondent was, “highly experienced... not super helpful.
But I don’t blame them because everyone is busy and they
have no obligation to ‘mentor’ me.” The responses seemed to
indicate some type of inverse relationship between skill and
responsiveness, with project members who were more skilled
being less likely to be responsive. One respondent commented,
“High level of expertise...not too responsive if their expertise
is really high but better if it is not that much.” In other
words, OTCs could tell that the project members who were
skilled were also difficult to communicate with, at least in
part due to their level of skill and tendency to look down on
the OTCs. This view was indicated by approximately 25% of
the respondents who indicated that the project members were
highly skilled.

Conversely, just over 25% of the respondents who indicated
that project members were highly skilled also found them to
be responsive. This view is characterized by the following
comment, “Extremely talented individuals and highly respon-
sive.” This view indicates that there does not have to be an
inverse relationship between skill and responsiveness. Overall,
the respondents that held this view were more pleased with
their fellow project members, with fewer negative comments
in their responses. Therefore, we can conclude that skill alone
is not sufficient for imparting a positive impression. Project
members also have to be responsive to OTCs if they want to
increase the chances of a positive impression.

No Answer
Other

Research
Solve puzzle

Financial
Test run

Curiosity, personal drive
Personal reputation

Scratch itch
Add new feature

Employer
Share with community

Fix bug

0% 10% 20% 30% 40%
Percentage of the OTCs

Fig. 4. Motivations Driving OTCs to Submit Code Changes

B. RQ2: What motivations drive One-Time Contributors to
contribute?

The answers to this research question came from survey
question Q11. The coding of the data resulted in the distribu-
tion shown in Figure 4. The reminder of this section examines
each of the top four answers in more detail (note that the Other
category is a catch-all for one-off responses that did not fit in
other categories, therefore we do not discuss it in detail).

1) Fix a Bug: The most common motivation for an OTC
was the desire to fix a bug that was interfering with their
personal needs or their employer’s needs. Most respondents
had little more to say than, “Trying to resolve an issue directly
affecting me.” Simply put, because they were bothered by a
bug, they fixed it to remove the problem.

Respondents who gave this motivation are potentially less
likely to become long-term contributors. To better under-
stand how this motivation might have impacted the overall
results, we performed a secondary analysis. We compare the
respondents who mentioned the fix bug motivation to those
respondents who mentioned other motivations.

The relative distribution of motivations after removing fix
bug is similar to the distribution in Figure 4 (which has all
respondents). Despite the fact that respondents could express
multiple motivations, the overall distribution does not change
when removing the fix bug response. This observation sug-
gests that those with the fix bug motivation typically had no
additional motivation for submitting their patch.

While there was little difference in the frequency of en-
countering barriers (discussed in Section V-C), we did observe
some differences between those with the fix bug motivation
and the other respondents. Compared with the other respon-
dents, those with the fix bug motivation had less experience
and communicated through fewer channels.

Overall, OTCs who expressed the fix bug motivation appear
to be less invested in the project than OTCs who had other mo-
tivations. An individual’s motivation and level of investment in
a project can significantly affect their chances of becoming a
core contributor [31], therefore the FLOSS community should
focus their efforts on those OTCs whose code contributions
were motivated by reasons other than simply fixing a bug.

2) Share with Community: The desire to give back to the
community, otherwise known as reciprocity, was the second
most common motivation for OTCs. These OTCs appear to
be more community-minded and contributed code to prevent
other users from encountering the same bug they faced.
According to one respondent, they contributed “[t]o better
the software, and to benefit other people.” Even though OTCs
only successfully contributed code to the project one time, they
made the contribution for the good of the project or out of a
sense of obligation to the project. That the reciprocal culture
in FLOSS projects extends all the way to the OTCs speaks to
the strength of the FLOSS culture.

3) Employer: The third most common motivation for OTCs
was work or an employer. Rather than being paid by their
employer to contribute to the FLOSS project, many OTCs
reported that they contributed the patch to the FLOSS project
to fix a bug or ease the use of some software or tool they
needed for work. Two representative quotes from respondents
are: “[w]e used the software as part of our build process and
the patch fixed a bug that was causing us a great deal of
trouble,” and “[f]ixing a bug that caused problems for my
company’s products.”

Other respondents reported that their motivation was to re-
duce internal maintenance for their employer. Two representa-
tive quotes from respondents are: “[f]ixing them would simplify
upmerging” and “integrating it into the mainline Android,
means less work for us in the future.” By contributing the
patch, the respondent made his own job easier by outsourcing
patch maintenance to the FLOSS project.

4) Add New Feature: The fourth most common motivation
was a desire to add a new feature to the product. Some OTCs
contributed a feature for their own benefit or because they
required it themselves. One respondent contributed because
of “[b]ugs I ran into or missing functionality I needed.”
Other respondents wanted to help other contributors as well
as themselves. According to one respondent, s/he contributed
to “[i]mplement functionality needed by us... beneficial also to
others without having to maintain a patch in our downstream
fork.” These respondents were motivated by the desire to have
their code included in and maintained by the project, both
so that they would not have to personally maintain it and
to help out other contributors who might require the same
functionality. Note that these responses also were coded into
the share with community category.

C. RQ3: What barriers do One-Time Contributors face which
prevent them from continuing to contribute?

The overall results for this question came from survey Q17.
Figure 5 shows the distribution of responses. Just under half
of those that responded (47%) indicated that they faced one
or more barriers that prevented them from making additional
contributions to their respective FLOSS projects. Slightly
fewer respondents indicated that they did not face a barrier.
The remaining were ambiguous or unintelligible, and therefore
could not be placed in either group.

No Answer

Other

Faced No Barriers

Faced Barriers

0% 10% 20% 30%
Percentage of the OTCs

Fig. 5. Whether OTCs Experience Barriers

Bad attitude
Dead−end project

Issues with git
Ignored

Lack knowledge
License

Entry difficulties
Process

Time

0% 10% 20% 30% 40%
Percentage of OTCs who Faced Barriers

Fig. 6. Specific Barriers Faced by OTCs

If respondents answered ‘yes’ to survey Q17, s/he had the
opportunity to describe the barriers s/he faced. Figure 6 shows
the distribution of the responses to this question. The reminder
of this section analyzes each of those responses in more detail.

1) Time: The most common barrier faced by OTCs was
time. These respondents did not have time to contribute
additional code to the project, so they left. Respondents gave
various explanations of how the lack of time impacted them.
Many respondents did not provide any explanation beyond
the simple answer of “[t]ime.” Other respondents focused on
the length of the review process. One respondent indicated
that the “extremely slow turnaround time on review/resolution
of bug reports” is what prevented them from submitting
subsequent code. Other respondents had other duties from
their employer with left no time for further code contributions.
One respondent indicated that s/he had a “very busy full time
job not related to project.” Still other respondents indicated
a “lack of time needed to further familiarize myself with the
codebase and the project in general.” While it might seem
difficult for FLOSS projects to encourage these respondents
make additional code contributions, some of the reasons given
for the time barrier could be addressed. For example, projects
could strive to provide a quicker turnaround on patch reviews,
especially for new contributors.

2) Process: The most common complaint about the process
was that the submission process was too long or too complex.
In addition, some respondents considered the code review pro-
cess to be too complex or lengthy, particularly for submitting a
simple code contribution. As one respondent put it, “[l]earning
the process seemed like more work than actually creating the
patch...” In these cases, the respondents found the process so
arduous and lengthy that it was not worth it to stay with the
project and learn the process.

Additional insight provided by the responses to survey
questions Q15 showed that a relatively small number of
respondents (15%) indicated that the patch creation or patch
submission process was difficult enough to deter them from
participating further in the project. Among these respondents,
the answer to survey question Q16 showed that patch sub-
mission was more difficult than patch creation. While this
barrier represents a small fraction of the respondents, it does
provide some potential guidance for FLOSS projects who wish
to attract more participants. If projects could ease the patch
submission process, then they could remove one of the barriers
that keeps contributors from continuing.

3) Entry Difficulties: These barriers barriers mostly con-
cerned difficulty with understanding the project. Specific con-
cerns about the project that discouraged further participation
included: Unfamiliar project management schemes, lengthy
“Help” pages, and complex, poorly documented code. Some
respondents expressed frustration with the process of getting
themselves ready to contribute. As one noted, “[i]n general,
it took a long time to get a current build running, then the
effort from getting the change accepted was more.”

Other respondents faced difficulties locating the bug they
chose to fix within the codebase. These respondents focused
mostly on the complexity of the code surrounding the bug
and the difficulties in understanding the codebase in general,
including the documentation. As one commented, “extremely
time consuming because... require (sic) good understanding of
very large codebase.” Easing the entry process and annotat-
ing or better documenting code would lower the barriers to
contributing for these respondents.

4) Lack Knowledge: Many of the respondents expressing
this view indicated that they were not familiar with the
programming language, the bug was above their skill level,
or they were not a programmer knowledgeable enough about
the code to contribute again. Similar to a concern expressed
by those with entry difficulties, a few respondents indicated
that the code was difficult to understand or that they did not
have the specific knowledge to fix the bugs. In general, these
respondents simply did not have the knowledge or experience
to write code at the level required by the project. As one
respondent commented, “mainly I am not a programmer...
anything more complex and my coding skills wouldnt have
been up for the job.” These respondents contributed what they
could, and could not contribute any more.

D. RQ4: If no barriers stand in the way of One-Time Con-
tributors, why do they choose to leave after a single patch?

While it is expected that some OTCs have no desire to
become long-term contributors, their reasons can still be of
interest. Figure 7 shows the distribution of responses given
by those whose departure from the project was not the result
of any specific barrier (Q17). “Nothing else to contribute”
means the respondent had nothing else to add to the project,
but would contribute again if they identified something in the
future. “Employer” means the respondent contributed as part
of their work, but the employer did not need them to make

Fixed bug

Don’t use product

No intent

Employer

Nothing else to contribute

0% 10% 20% 30% 40%
Percentage of OTCs who Faced No Barriers

Fig. 7. Non-Barriers Preventing OTCs From Further Code Contributions

additional contributions. “No intent” represents respondents
who specifically said they never had any intent to become
a contributor. “Don’t use product” covers respondents who
stopped contributing because they no longer use the FLOSS
project. Finally, “fixed bug” represent those who only con-
tributed to fix a specific bug they identified.

Overall, these respondents fixed the problem they saw and
moved on to other things. As one of the respondents put it,
“[t]he main reason I haven’t contributed more is that it already
has what I need and I don’t see anything else that needs
to be added for my use case.” The project had a bug that
was impacting the respondent. The respondent fixed the bug.
Having fixed it, the respondent did not have any desire or
motivation to contribute anything else to this project.

VI. DISCUSSION

This section discusses the results presented in the previous
section and compares those results with results from previous
studies to distinguish OTCs from other peripheral developers.

A. Impressions

Prior studies suggest that peripheral developers may be
dissuaded from a project if they form negative impressions
of project members [3], [24]. However, we found that most of
the OTCs were not scared off by negative impressions. Instead,
they largely hold positive impressions of the project members.
Only a few of the respondents had negative impressions
due to the lack of responsiveness. But these respondents
acknowledged that the projects were underresourced and the
members probably did not have time to respond to outsiders.

B. Motivations

Aside from reciprocity, all motivations discovered in this
study were need-based or extrinsic motivations [18], focused
on how the project could benefit the respondent. Reciprocity,
the only common intrinsic motivation, is not a fun/enjoyment-
based intrinsic motivation usually found in hobbyists. Rather, it
is an obligation/community-based intrinsic motivation. Similar
to other peripheral developers, OTCs were motivated most
commonly by extrinsic motivations or community-oriented
motivations [21]. In Pinto et. al’s study of the casual contrib-
utors, the top ranked motivation was “scratching an itch” (i.e.,

fixing issues that were blocking a developer) [20]. Although,
OTCs are a subset of the casual contributors, we also found
“fixing a bug” as the top motivations for the OTCs. OTCs’
motivations are more similar to need-based contributors than to
hobbyist contributors; they contribute primarily for their own
needs or out of a sense of obligation to give back to the com-
munity. The demographics of the OTCs provide an explanation
for this result. In comparison with previous studies examining
the demographics of the FLOSS developers [12], [15], OTCs
are generally more experienced software developers and have
made more contributions to other FLOSS projects.

In comparison with previous studies [3], [5], [18], our
sample has fewer paid contributors. Paid contributors have
little motivation to continue to contribute to a project unless
their employer requires it. Several of the paid OTCs indicated
that they would have continued if their job had required it.
Almost half of those who reported being paid to contribute
listed their employer as their primary motivation.

About a quarter of the respondents reported their employer
being their primary motivation, and yet did not reply ‘yes’
when asked if they were being paid to contribute in Q12.
For some, this is because they were working freelance. For
others, they might have neglected to reply ‘yes’ because they
contributed because of work, and not for work. As an example,
if the software they used for work was broken or was missing
a key feature, they might have fixed the bug or added the
feature not for their employer, but because they had to use it
for work. These respondents may not have perceived this work
as being ‘paid for,’ as their employer did not directly ask them
to contribute to a FLOSS project. Thus, their motivation was
both their employer and the desire to fix a bug. The results
support this observation. Fixing a bug was the second most
common motivation among these contributors, at 30%.

There is little FLOSS projects can do to retain OTCs who
contributed their code fully aware that they did not plan to
become long-term participants. However, approximately 20%
of the OTCs contributed code out of curiosity, for fun, for
personal reputation, to solve puzzles, or to experience open
source development. Yet they did not make a subsequent code
contribution. These OTCs could be considered to be the ones
mostly likely to be attracted to the project.

Examining these OTCs in more detail showed that 25%
reported negative opinions of the project as a result of being
neglected or the unresponsiveness of project members. This
findings coincide with those of a prior study’s findings that
peripheral developers may have to wait 2-19 times more than
the core members to get their patches accepted [4]. In addition,
27% of these OTCs indicated that they faced barriers related to
the bureaucratic process, licensing terms, and time constraints.

C. Barriers

While previous studies found evidence that newcomers were
discouraged from joining a project due to being ignored [24],
[31], our results showed a different pattern. Being ignored
was one of the less common barriers reported by the OTCs,
accounting for only 7% of responses. It is possible that many

OTCs never intended to become long-term contributors, so
they had no problem with being ignored. Another possibility
is that the projects we studied had a more complicated sub-
mission process, making the process a more important barrier.

Additionally, while previous studies showed that the process
of identifying a bug to fix and writing or locating test files
were difficult barriers faced by FLOSS newcomers [24], [29],
none of the OTCs mentioned either as a barrier. As reported in
Section V-B, most OTCs were motivated by the desire to fix a
bug they personally faced in using the product and only began
attempting to contribute after they found a bug. Rather than
needing assistance to identify a bug, identifying one was the
motivation to contribute in the first place. Instead of difficulties
in identifying a bug or in writing tests, our respondents found
more difficulties in the complexity of the patch submission
process and in the slow turnaround time on code reviews.

Some OTCs did not report any specific problems. They
simply had more motivation to leave than stay with the project.
However, some contributors did stop contributing due to barri-
ers. While the most common barrier was time (similar to Pinto
et. al’s study of casual contributors [20]), several other barriers
stood in their way, some of which the projects can address.
The patch submission process and difficulties with entering
the project are both such barriers. It might be expected that
newcomers would have difficulties with these steps. However,
the survey respondents were relatively experienced in FLOSS
projects. Since the respondents were familiar with FLOSS
development, it is interesting that they found the process of
dealing with the project difficult. Projects that wish to gain
more OTCs should try to ease their patch-submission process
and entry process, especially since even experienced FLOSS
developers had trouble with these processes.

VII. THREATS TO VALIDITY

This section describes the internal, external, and construct
validity threats of the study.

A. Internal Threats

In terms of selection, it is possible that some survey
recipients were not actually OTCs because they contributed
under another alias that we did not identify. A few survey
recipients responded that we had incorrectly identified them
as an OTC. However, based on the qualitative results and
responses to open-ended questions, we do not find this threat
to be significant and believe that the vast majority (if not all)
of those who responded to the survey were OTCs. Another
potential threat is the low response rate. If we calculate out
of 3,500, then it is approximately 6%. We cannot be sure that
all 3,500 emails actually reached a recipient; even so, the 184
responses we received provide a rich source of data to reveal
the insights described in this paper.

B. External Threats

The survey sample may not be representative of all OTCs
across all FLOSS projects. The projects used in this study were
primarily large, mature projects. The characteristics of OTCs

in smaller projects may be different from those included in
this study. However, many previous papers have focused on
only large, mature projects [18], [21], [22], [30], [31] which
gives this choice of using only large, mature projects some
validity. Additionally, our results could suffer from a potential
bias related to self-selection. The respondents who chose to
participate may not be an accurate representation of all OTCs.

C. Construct Threats

It is always possible that survey respondents misunderstand
the survey questions. To mitigate this threat, we conducted
a pilot study with experts in FLOSS and survey design. We
updated the survey based on the results. Additionally, the
actual responses to the open-ended questions indicate that the
respondents understood the intent of the questions.

VIII. CONCLUSION

In this paper we defined a type of FLOSS developer that
has not been studied, the OTC. We carefully identified 4,127
OTCs and surveyed them to understand their impressions,
motivations, and barriers with regards to code contributions
in FLOSS projects. The results show that OTCs are indeed
distinct from the larger set of peripheral developers. OTCs
have high software development experience. Most OTCs are
also experienced in contributing to other FLOSS projects and
are familiar with FLOSS development.

Interestingly, most OTCs did not have the prior motivation
to become long-term contributors. Most of them simply fixed
bugs that were impeding their work and wanted to share that
fix with the community. Due to their experience and domain
knowledge, they faced different barriers from those prior
research identified as barriers newcomers faced. However,
similar to other newcomers, many OTCs also formed negative
impressions of the project due to lack of responsiveness. Yet
many of them also understood that FLOSS project members
were overworked and those negative impressions were not the
primary reason for leaving the project.

However, some OTCs did leave the project because of
negative impressions and barriers that FLOSS projects could
address to improve the chances of retaining these OTCs. For
example, a delayed response to a patch submission bothers
many newcomers and OTCs. FLOSS projects should should
have means to ensure timely feedback for newcomers. Finally,
the patch submission process was difficult even for experi-
enced developers like the OTCs. Therefore, FLOSS projects
should provide better documentation to guide newcomers
through the patch submission process.

ACKNOWLEDGMENT

This research is partially supported by the US National Sci-
ence Foundation Grant No. 1322276. Any opinions expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. We thank
the respondents to our survey.

REFERENCES

[1] M. Y. Allaho and W. C. Lee, “Analyzing the social ties and structure
of contributors in open source software community,” in Advances in
Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM
International Conference on, Aug 2013, pp. 56–60.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in Proceedings of the 2006
International Workshop on Mining Software Repositories, ser. MSR
’06, 2006, pp. 137–143. [Online]. Available: http://doi.acm.org/10.
1145/1137983.1138016

[3] A. Bosu, J. Carver, R. Guadagno, B. Bassett, D. McCallum, and
L. Hochstein, “Peer impressions in open source organizations: A
survey,” Journal of Systems and Software, vol. 94, pp. 4 – 15,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121214000818

[4] A. Bosu and J. C. Carver, “Impact of developer reputation on code
review outcomes in oss projects: An empirical investigation,” in Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’14, 2014, pp. 33:1–
33:10.

[5] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
Aspects and Social Dynamics of Contemporary Code Review: Insights
from Open Source Development as well as Industrial Practice at Mi-
crosoft,” IEEE Transactions on Software Engineering (TSE), 2016.

[6] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,”
in Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 257–268. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635880

[7] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.

[8] K. Crowston, H. Annabi, and J. Howison, “Defining open source soft-
ware project success,” Proceedings of the 24th International Conference
on Information Systems, pp. 327–340, 2003.

[9] T. T. Dinh-Trong and J. M. Bieman, “The freebsd project: A replication
case study of open source development,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 481–494, 2005.

[10] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” Comput. Supported Coop. Work, vol. 14,
no. 4, pp. 323–368, Aug. 2005. [Online]. Available: http://dx.doi.org/
10.1007/s10606-005-9000-1

[11] J. L. Fleiss, B. Levin, and M. C. Paik, The Measurement of Interrater
Agreement. John Wiley & Sons, Inc., 2004, pp. 598–626. [Online].
Available: http://dx.doi.org/10.1002/0471445428.ch18

[12] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open
source software: Survey and study,” 2002.

[13] B. Glaser and J. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine, 1967.

[14] C. Hannebauer, M. Book, and V. Gruhn, “An exploratory study of
contribution barriers experienced by newcomers to open source soft-
ware projects,” in Proceedings of the 1st International Workshop on
CrowdSourcing in Software Engineering, ser. CSI-SE 2014, 2014, pp.
11–14.

[15] A. Hars and S. Ou, “Working for free? motivations of participating
in open source projects,” in Proceedings of the 34th Annual Hawaii
International Conference on System Sciences, 2001, pp. 9–pp.

[16] G. G. K. J. Richard Landis, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

[17] C. Jensen, S. King, and V. Kuechler, “Joining free/open source software
communities: An analysis of newbies’ first interactions on project
mailing lists,” Proceedings of the 47th Hawaii International Conference
on System Sciences, vol. 0, pp. 1–10, 2011.

[18] K. Lakhani and R. Wolf, Why Hackers Do What They Do: Under-
standing Motivation and Effort in Free/Open Source Software Projects.
Cambridge: MIT Press, 2005.

[19] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

[20] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than
you think: An in-depth study of casual contributors,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, March 2016, pp. 112–123.

[21] P. Setia, B. Rajagopalan, V. Sambamurthy, and R. Calantone, “How
peripheral developers contribute to open-source software development,”
Info. Sys. Research, vol. 23, no. 1, pp. 144–163, Mar. 2012. [Online].
Available: http://dx.doi.org/10.1287/isre.1100.0311

[22] S. K. Shah, “Motivation, governance, and the viability of hybrid forms
in open source software development,” Manage. Sci., vol. 52, no. 7, pp.
1000–1014, Jul. 2006. [Online]. Available: http://dx.doi.org/10.1287/
mnsc.1060.0553

[23] B. Shibuya and T. Tamai, “Understanding the process of participating in
open source communities,” in Proceedings of the 2009 ICSE Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and
Development. IEEE Computer Society, 2009, pp. 1–6.

[24] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in
open source software projects,” in Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social
Computing, ser. CSCW ’15, 2015, pp. 1379–1392. [Online]. Available:
http://doi.acm.org/10.1145/2675133.2675215

[25] A. Strauss and J. M. Corbin, Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory. Sage, 1998.

[26] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community,
joining, and specialization in open source software innovation: a
case study,” Research Policy, vol. 32, no. 7, pp. 1217 – 1241,
2003, open Source Software Development. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0048733303000507

[27] J. Wang and A. Sarma, “Which bug should i fix: Helping new developers
onboard a new project,” in Proc. CHASE. ACM, 2011, pp. 24–27.

[28] J. Wang, P. C. Shih, Y. Wu, and J. M. Carroll, “Comparative case
studies of open source software peer review practices,” Information and
Software Technology, vol. 67, pp. 1 – 12, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584915001068

[29] V. Wolff-Marting, C. Hannebauer, and V. Gruhn, “Patterns for tearing
down contribution barriers to floss projects,” in Intelligent Software
Methodologies, Tools and Techniques (SoMeT), 2013 IEEE 12th Inter-
national Conference on, Sept 2013, pp. 9–14.

[30] Y. Ye and K. Kishida, “Toward an understanding of the motivation of
open source software developers,” in Proceedings of the 25th Interna-
tional Conference on Software Engineering. IEEE, 2003, pp. 419–429.

[31] M. Zhou and A. Mockus, “Who will stay in the floss community?
modeling participant’s initial behavior,” IEEE Transactions on Software

Engineering, vol. 41, no. 1, pp. 82–99, Jan 2015.

