
Effects of Cloned Code on Software
Maintainability: A Replicated Developer Study

Debarshi Chatterji, Jeffrey C. Carver, Nicholas A. Kraft
Department of Computer Science

The University of Alabama
Tuscaloosa, AL, USA

dchatterji@ua.edu; {carver, nkraft}@cs.ua.edu

Jan Harder
Software Engineering Group

University of Bremen
Bremen, Germany

harder@informatik.uni-bremen.de

Abstract—Code clones are a common occurrence in most
software systems. Their presence is believed to have an effect
on the maintenance process. Although these effects have been
previously studied, there is not yet a conclusive result. This paper
describes an extended replication of a controlled experiment (i.e.
a strict replication with an additional task) that analyzes the
effects of cloned bugs (i.e. bugs in cloned code) on the program
comprehension of programmers. In the strict replication portion,
the study participants attempted to isolate and fix two types of
bugs, cloned and non-cloned, in one of two small systems. In
the extension of the original study, we provided the participants
with a clone report describing the location of all cloned code in
the other system and asked them to again isolate and fix cloned
and non-cloned bugs. The results of the original study showed
that cloned bugs were not significantly more difficult to maintain
than non-cloned bugs. Conversely, the results of the replication
showed that it was significantly more difficult to correctly fix a
cloned bug than a non-cloned bug. But, there was no significant
difference in the amount of time required to fix a cloned bug
vs. a non-cloned bug. Finally, the results of the study extension
showed that programmers performed significantly better when
given clone information than without clone information.

Index Terms—code clones; software clones; empirical studies;
clone management; software maintenance; developer behavior

I. INTRODUCTION

Developers often reuse code via copy and paste [13]. The
resulting copies are known as code clones. While code clones
are not inherently harmful [5], [6], [12], [20], [23], they
are associated with long-term risks to software quality and
maintainability. Relative to quality, if buggy code is cloned, the
bugs are also cloned. Relative to maintainability, bug fixes and
other changes must be propagated to all cloned fragments po-
tentially resulting in increased maintenance effort. In addition,
explicit or implicit links among cloned code fragments must be
maintained when those fragments need to remain consistent.

Researchers have used retrospective analysis of software
repositories to study the effects of code clones on quality
and maintainability [2], [3], [8], [10], [15], [16], [18], [19],
[23]. These post hoc studies have focused on qualities such
as genealogical traits [3], [23] and clone propagation [15].
While post hoc studies can reveal important information,
they do have limitations. For example, these studies examine
snapshots of the source code, but are not able to understand
the actions that occurred in between the snapshots. Hence,

these studies may miss valuable information that could provide
insight into the maintenance process. Therefore, to understand
the effects of code clones on software maintainability, there
is a need to actively observe developers as they maintain
code. There is currently a dearth of this type of human-based
empirical studies to complement the retrospective studies of
code repositories.

In two recent developer studies, we investigated the effects
of cloned code on bug localization [4] and on bug removal [7].
While the results of these studies provided insights into the
behavior, efficiency, and effectiveness of developers tasked
with understanding and removing bugs in cloned code, each
study had limitations that needed to be addressed by additional
studies. In the bug localization study [4], developers used a
clone report to help them locate bugs in cloned code, but did
not actually repair the bugs. The results of this study showed
that proper use of clone information was helpful. In the bug
removal study [7], developers were asked to fix bugs in cloned
code, but were not provided with clone information. This study
did not find any significant difference in the difficulty of fixing
cloned bugs compared with non-cloned bugs.

To better understand the factors that may have affected the
results in these prior studies, to provide additional evidence
regarding the effects of code clones on software maintain-
ability, and to understand the impact of providing developers
with clone information during a debugging task, we designed a
replication of the bug removal study by Harder and Tiarks [7].
Replication of experiments in different environments with
different populations is necessary for validation and gener-
alization of results [1], [11], [21]. Although the level of
involvement of the original experimenters in the replication is
a debated topic [11], [14], [17], [22], we opted to collaborate
with Harder to ensure the fidelity of the replication and to draw
the most benefit from his experiences conducting the original
study. During the replication, Harder acted as a consultant,
helping in the setup of the study design and the data analysis.
He shared the laboratory package used for the original study
which consisted of the archives of the Eclipse plugin used for
this study and the source code for the software systems along
with an instruction manual.

The remainder of the paper is organized as follows. Sec-
tion II describes the study design. Section III reports the

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

112



results. Section IV compares the results of the original study
and the extended replication. Section V identifies threats to
validity. Section VI summarizes the contributions of the paper
and describes future directions.

II. STUDY DESIGN

The overall goal of this study was to investigate the effects
of cloned code on software maintainability via a replicated
experiment. In this case, the replication was an extended
replication, which has two parts:

• The Replication - a strict replication of the original
study [7] to confirm (or refute) the results of the original
study, and

• The Extension - an extension of the replication to deter-
mine whether developers were more effective in removing
bugs when provided with code clone information.

Harder and Tiarks developed a laboratory package for the
original study that investigated the effects of cloned code on
the performance of developers performing debugging tasks [7].
We used this laboratory package to conduct the Replica-
tion and an augmented version of it (which included clone
information about the subject software systems) to conduct
the Extension. We used the same study design for both the
Replication and the Extension, with the exception of providing
the participants with clone information during the Extension.
Compared to the original study design of Harder and Tiarks,
the design of the replication introduced a few minor changes.

First, in the original study, each participant performed the
study tasks during one of several sessions along with a small
number of other participants, whereas in the replication, each
participant performed the study tasks during two consecutive,
75-minute class meetings along with his/her classmates. Sec-
ond, in the replication, each task was treated as a classroom
assignment, and participants were given credit for attempting
the tasks (rather than for completing the tasks successfully).
Students in three distinct courses participated in the study.

A. Research Objectives

The study addressed three research questions:

RQ1: Does the time needed for a bug removal increase when
the bug is cloned?

RQ2: Does the probability of incorrect bug removals increase
when the bug is cloned?

RQ3: Does the performance of participants improve when they
are provided with clone related information?

The Replication addressed RQ1 and RQ2, which we adopted
from the original study. The Extension addressed RQ3. In
particular, we formulated and tested three null hypotheses,
each of which is motivated by one of the research questions:

Htime
0 The time needed for removal of a cloned bug is less

than or equal to the time needed for removal of a
non-cloned bug.

Hcorr
0 The probability of a correct removal of a cloned bug

is greater than or equal to the probability of a correct
removal of a non-cloned bug.

Hcinf
0 The probability of a correct removal of a bug without

clone information provided is greater than or equal
to the probability of a correct removal of a bug with
clone information provided.

The corresponding alternative hypotheses are:

Htime
A The time needed for removal of a cloned bug is

greater than the time needed for removal of a non-
cloned bug.

Hcorr
A The probability of a correct removal of a cloned bug

is less than the probability of a correct removal of a
non-cloned bug.

Hcinf
A The probability of a correct removal of a bug without

clone information provided is less than the prob-
ability of a correct removal of a bug with clone
information provided.

B. Variables

The variables are the same as in the original study.
1) Independent Variables: (a) Programs — We used two

software systems for the maintenance tasks: Frozen Bubble
and Pacman (described in more detail in Section II-D). (b)
Versions — Each software system had two different versions:
one containing a multiple-instance (cloned) bug and one
containing a single-instance (non-cloned) bug.

2) Dependent Variables: (a) Time — Seconds needed by a
participant to finish the tasks. (b) Correctness — Three levels
describing the removal of a bug:
Addressed: For a cloned bug, the participant removed at least
one, but not all, of the instances of the bug.
Complete: The participant removed all instances of the bug.
(Note that for the non-cloned bugs, this level is equivalent to
the Addressed level)
Incomplete: The participant was unable to remove any in-
stances of a bug, resulting in his or her data being excluded
from the study.

C. Subject Selection

In the original study, the participants included 21 computer
science students from the University of Bremen and 12 at-
tendees of Dagstuhl Seminar 12071, which hosted researchers
from the code clone community. All student participants were
required to have taken a Java course before participating in
the study. The original experimenters differentiated between
novice and expert programmers. The student participants were
deemed to be novice programmers. The Dagstuhl participants
were deemed to be expert programmers.

In the replication, the 47 participants included 23 stu-
dents enrolled in a junior-level software engineering course,
8 students enrolled in a senior-level software engineering

113



course, and 16 students enrolled in a graduate-level software
engineering course (all at the University of Alabama). All
participants had previously taken at least one programming
course. Similar to the original study, we assumed that we
could split the participants into a novice group (undergraduate
students) and an expert group (graduate students). In reality
it was not possible to make this distinction based on the data
collected from the background surveys. The participants’ mean
self-evaluation of Java familiarity on a scale of 1 (not familiar)
to 100 (expert) was 42.96 for the undergraduates and 48 for the
graduates. The difference of 5.04 between the groups was not
large enough to treat them as separate groups as was done in
the original study with the students and the Dagshtul attendees.
The level of expertise of the participants in the replication is
lower than that of the participants in the original study (i.e.
in which participants not familiar with Java were excluded).
Given the small sizes of the software systems and the low
complexity of the bug fixes, we did not consider lack of
familiarity with Java to be a threat to validity.

Another difference between the replication participants and
the original participants is that only 2/3 of the replication
participants were familiar with Eclipse while all of the original
participants were familar with Eclipse.

All participants took part in both the Replication and the
Extension. After collecting the data, we excluded 10 partic-
ipants from the Replication and the Extension along with 2
additional participants from the Extension only due to one of
the following reasons:

• Corrupt XML files in the workspace,
• Corrupt Eclipse log files (due to improper shutdown), or
• Incomplete tasks

Thus, we analyzed data for 37 participants in the Replication
and 35 in the Extension.

D. Instrumentation

This section describes the software systems and the plug-ins
that the participants used to perform the tasks.

1) Software Systems: FrozenBubble (FB) and Pacman (PC)
are both open source games with fewer than 3,000 lines
of code. These systems were chosen to ensure that the bug
removal tasks would be neither too difficult, nor too easy for
the participants. In addition, the games were chosen for their
visual appeal and their potential to engage the participants in
removing the bugs.

FB is a Tetris-like game that uses a launcher to shoot
bubbles of different colors. A group of three or more of the
same colored bubbles can be eliminated by shooting them
with another bubble of that color. The aim of the game is
to eliminate all bubbles. The bug was designed to represent a
visual defect. In both buggy versions (cloned and non-cloned),
there are only grey bubbles available. Because all bubbles are
the same color, one shot eliminates all of the bubbles. Figure 1
shows the pseudocode for the original code snippet from the
FrozenGame class. A copy of the snippet shown in Figure 1,
existed in class LaunchBubbleSprite, which was similar except
the third array was missing. For the cloned buggy version

of FB, the researchers inserted the bug by changing i+1
to 1 in lines 6 through 8. For the non-cloned version, the
copy in the class LaunchBubbleSprite was removed. For this
version, the FrozenGame class had the sole responsibility to
load the bubbles and pass them to LaunchBubbleSprite upon
instantiation. The following bug report describes the problem:
There are eight differently colored bubbles in the game. When
a level starts, only gray bubbles appear on top. The launcher
at the bottom will also fire only gray bubbles. Obviously not
all available bubbles are loaded.

In PC, the two characters (Pacman and Ghost) are governed
by the direction of movement and an invisible grid to check
for collisions. The defect was introduced by changing the grid
movements for up and left directions. The visual effect of
this defect made the characters jump in a flickering motion
back and forth. Figure 2 presents the pseudo code for the
original movement function. There were copies of this function
in the classes Player and Ghost. The researchers from the
original study created the cloned version of PM by changing
subtractions to additions in lines 8 and 38 in both the clones.
To create the non-cloned version, they abstracted the switch
structure that was cloned in both classes to the Actor class
using proper post processing steps. The following bug report
describes the problem: For all game characters, the movement
up and left does not work correctly. Instead of moving up or
left the characters move in the opposite direction in a flickering
motion. Moving down and right works fine for all characters.

We designed these two systems to emulate real-life bug-
fixing scenarios. Bug reports and expected behaviors were
provided. The bugs were small and localized, allowing them
to be solved within the time constraints. For the cloned bugs,
a similar defect was injected in two existing clones in the
system. It is to be noted that the code clones in both the
software systems were of near-miss type and not exact clones.
To produce the non-cloned bugs, these clones were abstracted
to a single defective entity. The bugs produced visual behav-
ioral symptoms rather than complete system crashes, making
it easier for the participants to reproduce them. In case of the
cloned bugs, the two different instances created distinct visual
symptoms. Total removal of visual symptoms was possible
only after fixing both the instances of the bug.

2) Eclipse Plugin: The original experimenters extended
Eclipse with a plug-in that displayed step-by-step instructions
(e.g., the task descriptions) to guide the participants through
the experiment. The plug-in also logged participant data in-
cluding the time required to complete tasks and the usage of
features like search. Finally, the plug-in administered the study
surveys.

The environment for performing the study tasks was dis-
tributed to participants via USB drives. Each key had pre-
configured Eclipse environments for Linux, Mac OS X, and
Windows. The subjects unpacked the appropriate archive, ran
Eclipse, and loaded the provided workspace. The participants
were instructed to save any code changes in the workspace
to allow the researchers to later analyze them for correctness.
One of the authors supervised the sessions and was available

114



Fig. 1. Pseudo Code for FB Code Snippet

to help setup Eclipse. Each participant received the appropriate
USB drive for his or her assigned group (see Section II-E).

E. Experimental Operation

We used the two variants of each of the two software
systems from in the original study. For clarity we refer to
these variants with the same terms as used in the original
study, namely: FBnc and FBc (the non-cloned and cloned
versions of FB) and PMnc and PMc (non-cloned and cloned
versions of PC).

Similar to the original study, we divided the participants
randomly into Group A and Group B. The objective of parti-
tioning participants into two groups was to counterbalance the
study design to remove any potential ordering or interaction
effects related to the artifacts. For each of the four tasks (two
for the Replication and two for the Extension), the participants
received a version of the system that included one or more
bugs. During the Replication portion, the participants located
and repaired the bugs without any additional documentation
aids. However, during the Extension, we provided clone reports
to the participants to aid in bug location and repair. Table I
illustrates which system the participants in each group used
for each of the four tasks.

At the end of each session, the Eclipse plug-in created a zip
file and saved it back to the USB drive. The zip file contained
the four workspaces from the four tasks. Each workspace
included: the modified source code, log files and responses
to short surveys. We modified the analysis scripts from the
original study to work properly on both the Replication and
the Extension.

F. Extended Design

The Extension added two bug repair tasks, this time with
the benefit of a clone report. This section describes the clone
report and requisite training required to use the report.

1) Clone Reports: We provided the participants with text-
based clone reports similar to those used in our earlier
study [4]. The clone reports listed clone groups within the
systems as illustrated in the template in Figure 3. Figures 4
and 5 show the specific clone groups that contained the bugs
in the FBc and PMC systems respectively.

Fig. 2. Pseudo Code for PM Code Snippet

115



TABLE I
ASSIGNMENT OF GROUPS TO TASK

Sessions Task # Group A Group B

Replication 1 Frozen Bubble w/non-cloned bug (FBnc). Frozen Bubble w/cloned bug (FBc)
2 Pacman w/cloned bug (PMc) Pacman bug w/non-cloned bug (PMnc)

Extension 1 Pacman w/non-cloned bug (PMnc) Pacman w/cloned bug (PMc)
2 Frozen Bubble w/cloned bug (FBc) Frozen Bubble w/non-cloned bug (FBnc)

Fig. 3. Clone Report Template

2) Training: To avoid biasing the Replication portion of the
study, we did not inform the participants the subject of the
study was code clones. Prior to the Extension, we provided
a brief background on code clones and how to read a clone
report. To prevent biasing the results of the Extension portion,
we took care only to describe how to read a clone report, now
how to use the report for bug removal.

III. RESULTS

This section presents brief results from the original study
and detailed results from the Replication and Extension.

A. Original Study Results

The data obtained in the original study did not provide
statistical evidence to reject Htime

0 or Hcorr
0 . Nevertheless, the

results indicated promising trends. Regarding Htime
0 (RQ1),

Table V shows that, although difference was not significant,
the participants took more time to fix the cloned bug than
they did to fix the non-cloned bug, in most cases. The only
exception was that the expert group on average solved PMc

more quickly than they solved PMnc. However, this result
may have been caused by the small group size and a uneven
distribution of Java skills between the two groups. Overall, it
took participants almost twice as long to fix the cloned bug
as it took them to fix the non-cloned bug. This difference
was primarily caused by subjects who provided incomplete
solutions. If only correct solutions are considered and an
outlier is removed, the measured difference was much smaller
(15.0% for FB and 10.2% for PM). In absolute numbers the
difference did not exceed two minutes. The authors concluded
that such a difference may not have a considerable effect in
practice.

Regarding Hcorr
0 (RQ2), most participants succeeded in fix-

ing at least one bug occurrence. However, for the cloned bug,

many participants submitted incomplete solutions. Table VI
summarizes the results. Less than half of the students suc-
ceeded in fixing both instances of the cloned bug for FB.
For PM, one third of the solutions for the cloned bug were
incomplete. Surprisingly, some of the experts also failed to
fix the cloned bug. For PMc, one third did not fix both bug
occurrences and one expert missed the cloned bug in FBc.
In general, the experts performed better than the students, but
the experts participated in the study within a cloning seminar
and may have expected clones. The fact that these expert
participants provided several incomplete solutions, although
they should have been aware of clones, illustrates the risk
potential of incomplete fixes of cloned bugs. The authors of
the original study concluded that although the results were not
statistically significant they indicate that there may be a high
risk of such incomplete solutions. These findings encouraged
us to replicate the study to further investigate the effect.

B. Replication

This section describes the results of the Replication portion
of the replication in three sections: Descriptive Analysis,
Timing & Effort, and Correctness.

1) Descriptive Analysis: Each participant was assigned a
level of correctness (Addressed, Complete, or Incomplete)
for each task based on his or her success in solving that
task. As noted earlier, only data from participants that were
scored in the Addressed or Complete level of correctness
remained in the analysis. The Venn diagram in Figure 6
illustrates the distribution of participants. The set “Cloned Bug
— Addressed” represents the participants who solved at least
one instance of the cloned bug. This set has a proper subset
“Cloned Bug — Complete” that represents the participants
who fixed both bug instances. Similarly, the set “Non-Cloned
Bug — Complete” represents the participants who fixed the
non-cloned bug.

2) Timing & Effort: We used different strategies to measure
time and effort. We retrieved these log files to calculate the
timing measurements. As there was no direct way to measure
effort, we chose to use the Task Load Index (TLX) [9]. TLX
is an assessment technique proposed by NASA to assess per-
ceived workload for a particular task. TLX is computed over
four different parameters: mental demand (MD), performance
(PF), effort (EF) and frustration (FR). We used surveys to
gather the following information from participants relative to
each TLX parameter:

• mental demand needed to solve the bug,

116



Fig. 4. Clone Group for FrozenBubble

Fig. 5. Clone Group for Pacman

TABLE II
AVERAGE TIMES AND P-VALUES FOR MANN WHITNEY U TEST

Frozen Bubble Pacman
Cloned Non-Cloned Cloned Non-Cloned

Addressed Participant Times (in seconds)
Mean 1243.7 > 1044.85 491.75 > 460.04

Median 1135 > 835.5 445.5 > 401
p-value 0.212 0.432

Complete Participant Times (in seconds)
Mean 1337.25 > 1044.85 483.92 > 460.04

Median 1155 > 835.5 445.5 > 401
p-value 0.238 0.44

Fig. 6. Distribution of Participants (Replication)

• how successful were they performing the task,
• how much effort was needed, and
• how frustrated were they while performing the task.

The results for each artifact, illustrated in Figure 7, show
conflicting results. For FB, the TLX scores are higher for
the cloned version than for the non-cloned version [TLX
FBnc (25.56) < TLX FBc (39.47)]. This result was expected.
Conversely, for PM, the TLX scores are higher for the non-
cloned version than for the cloned version [TLX PMnc

(26.56) > TLX PMc (22.02)]. This result was unexpected.
Because PMc had two instances of the bug, we expected the

Fig. 7. Task Load Index

TLX to be higher than for PMnc. We hypothesize that this
result may be due to the use of a more complex abstraction to
produce the non-cloned version. Further studies are required
to check whether there is a definitive reason for this behavior
or whether the result is merely an outlier.

To calculate the timing measurements we evaluated the
recorded times in the respective workspaces. The Box-and-
Whisker plot in Figure 8 illustrates the distribution of times
for the Replication . Table II provides the mean and median
times for the participants. The Addressed Participant Times

117



Fig. 8. Times for All Participants in Seconds)

are the times for the participants who fixed at least one bug.
The Complete Participant Times are the times for participants
who found and fixed all the instances of the bug.

Table II shows that the mean and median times were greater
for the cloned versions in all cases. The median time to
completely fix the cloned bug was 38% greater than the mean
time to completely fix the non-cloned in the FB program and
11% longer in the PC program. These differences translate
into about 5 minutes for the FB program and just under 1
minute for the PC program. We applied the Mann-Whitney
U test to assess whether the independent samples (times for
cloned and non-cloned version) were significantly different
than each other. Similar to the results of the original study,
the differences were not significant (p-value rows in Table II).
Hence, though we cannot reject the null hypotheses Htime

0 ,
the results do support the same trend that was evident in the
original study that the cloned bug took more time to fix than
the non-cloned bug.

TABLE III
CORRECTNESS EVALUATION

Fisher (1-tailed) Bernard (1-tailed)
FB < 0.01 < 0.01
PM < 0.01 0.01

TABLE IV
ADDRESSED VS. COMPLETE FOR CLONED BUG

Total Addressed Complete %
Replication 37 34 20 59%
Extension 35 35 29 83%

3) Correctness: To judge the correctness of the each partic-
ipant’s solution, we manually checked his or her workspace for
bug fixes. First, we executed the programs to check if all the
visual symptoms of the bug were removed. Second, we used
a diff to inspect the changes to the code. For the Replication
, 20/37 achieved a Complete solution for the cloned bug,
with 30/37 achieving a Complete solution for the non-cloned
bug. Fourteen additional participants achieved an Addressed
solution for the cloned bug (i.e., they were able to fix only
one instance of the bug).

To evaluate Hcorr
0 , we used Barnard’s exact test and Fisher’s

test to test whether the participants were able to obtain a
Complete solution to the non-cloned bug more often than
they were able to obtain a Complete solution to the cloned
bug. These statistical tests are suitable for use on small data
sets in the form of contingency tables. The results of these
tests, shown in Table III, illustrate that the participants were
significantly more likely to obtain a Correct solution to the
non-cloned bug. Thus, we can reject the null hypothesis Hcorr

0

and accept the alternate hypothesis Hcorr
A . This result provides

more strength to the results of the original study which showed
a promising trend, but not a significant result.

C. Extension

The second part of the replication, the Extension, studied
the effect of providing developers with information about the
clones present in the code being maintained. The Extension

Fig. 9. Distribution of Participants (Extension)

118



was motivated by RQ3 and tested hypothesis Hcinf
0 to see

whether providing developers clone reports helped them more
effectively fix cloned bugs than without clone reports. The
Venn Diagram in Figure 9 illustrates the results of the Exten-
sion.

Similar to the analysis for the Replication portion of the
experiment, we tested the workspaces collected from each
participant for correctness. As shown in Table IV, in this
case, all 35 participants Addressed the cloned bug, with 29
providing a Complete solution.

The results from our previous work showed that, if used
correctly, clone reports can help developers locate multiple
instances of a bug [4]. During the training, we suggested that
the participants should employ the correct strategy when using
the clone reports, i.e. first locate a bug then use the clone
report to determine if there are other instances of that bug.
The results shown in Table IV show that the participants in
the Extension were more successful in locating the cloned
bug and obtaining a Complete solution. In the Extension,
83% of the participants who fixed at least one instance of
the bug (Addressed) were successful in fixing the cloned
instance (Complete). This result was an improvement over
the Replication, where the ratio Addressed:Complete was only
59%. A Chi-Square test on this data showed that the ratio of
Addressed:Complete was significantly different between the
Replication and the Extension (X21 = 4.267; p = .039). These
results allow us to successfully reject the null hypothesis Hcinf

0

and accept the alternate hypothesis Hcinf
A . Therefore, these

results indicate that the proper use of clone information can
help developers maintain cloned code.

IV. COMPARISON AND DISCUSSION OF RESULTS

To gain the most insight from the replication, this section
compares the results from the original study to the results from
the Replication part of the replication study with regards to the
time and correctness variables.

A. Time

Table V summarizes the results for the time variable across
both studies. In general, it took developers more time to fix the
cloned bugs than it did to fix the non-cloned bugs, although
these differences were rather small (5 minutes and 1 minute,
respectively) and not statistically significant. Across both
studies, there was only one case where this result did not hold
(experts from the original study working on FB). The authors
of the original study did not provide a concrete explanation
for why experts behaved differently on the FB problem. They
argued that the unexpected behavior may have been an artifact
of the small sample size or an uneven distribution of expertise.
Our initial hypothesis for this result was that the process used
to refactor the clone may have been more complex in the
FB program. But, after analyzing the code, the refactoring
approach was similar in both systems and the clones seemed
to be of similar complexity across both systems.

While cloned bugs tended to take longer to fix, the differ-
ence was only significant in one case. Therefore, we are not

yet able to draw a definitive conclusion. While some previous
research has suggested that clones can be problematic for
maintenance, this view is not universal. The results of these
two studies seem to confirm that the impact of clones on bug
repair still needs further study.

B. Correctness

Table VI summarizes the correctness evaluation for the com-
plete solutions along with the p-values. The results show that
for the students in the original study and for the participants in
the Replication, correctness was significantly worse for the FB
program when clones were present. Because the participants
in the Replication are most similar to the students in the
original study, this result is consistent. The results relative
to the PC program were inconsistent with a significant result
in the Replication and a non-significant result in the original
study. At this point, we have no concrete explanation for this
difference.

Overall, the expert population seemed to behave differently
than the students. This result is not surprising because the
experts were drawn from the participants in a workshop on
code clone research. Due to this characteristic, it is possible
that these participants were expecting the system to contain
clones. Such an expectation might introduce a participation
bias where the traits of the participants can affect the outcome
of the study. The students in the original study and the
participants in the Replication were not aware that the study
was focused on code clones, therefore they were likely not
biased to look for clones.

In general, the results of the replication are consistent with
the results of the original study, with regards to the novice
participants. It appears that cloned bugs are more difficult to
completely fix correctly.

V. THREATS TO VALIDITY

This section discusses the threats to the validity for the two
parts of the extended replication.

A. Construct Validity

In a real maintenance environment, the process of fixing a
bug is iterative. However, in these studies, the Eclipse plug-in
was designed so that the participants had to complete one bug
fixing task prior to moving on to the next one. They could
not go back and revisit their earlier solutions. The dependent
variable correctness might be affected by this design. It is
not clear how the results would be affect if participants were
allowed to return to a previous solution. In addition, the
dependent variable time captured the total time for completion
of the task. It was not possible to investigate the time spent on
various activities, such as familiarization, playing the games,
code comprehension, refactoring. Dividing the time among
various activities and only counting those tasks that clearly
related to the focus of the study could have produced different
results.

119



TABLE V
ADDRESSED VS. COMPLETE AVERAGE TIMES IN SECONDS

FBc FBnc p-value PMc PMnc p-value
Students Addressed 1,615 > 812 0.008 720 > 490 0.175

(Original Study) Complete 934 > 812 0.22 842 > 490 0.075
Experts Addressed 923 < 1,276 0.91 838 > 508 0.12

(Original Study) Complete 516 < 1,276 0.985 825 > 508 0.165
Replication Addressed 1,244 > 1,045 0.106 492 > 460 0.216

Complete 1,337 > 1,045 0.119 484 > 460 0.22

TABLE VI
ADDRESSED VS. COMPLETE FOR CLONED BUG

Total Complete % Fisher (1-tailed) Barnard (1-tailed)
FB PM FB PM

Students (Original Study) 21 12 57% 0.0085 0.0902 0.0061 0.0617
Experts (Original Study) 12 9 75% 0.5000 0.5000 0.3024 0.3024

Replication 37 20 59% <0.001 <0.001 <0.001 0.002

B. Internal Validity

We randomly divided the participants into groups without
considering their experience or expertise in debugging tasks.
There is a chance that the groups were not balanced based
on those parameters. Because the participants in each group
executed the experimental tasks on different artifacts, it is
possible the results would have been different if we had
ensured balanced groups. But, because the results of the
Replication were consistent across artifacts, we do not think
this threat is serious. Also, since we excluded the results of
participants who were unsuccessful in solving the bugs, the
group size was not balanced.

For the Extension part, there was the potential for learning
bias because we used the same software systems as in the
Replication. Note that even though the participants used the
same systems in the Extension as in the Replication they were
provided with a different variant for each part. The bugs,
as explained in Section II, and the refactoring solutions for
the two variants of the systems were different and reuse of
previous solution was unlikely. We could have reduced this
bias by using different participants for the Extension, but
due to the high cost of human-based studies, this approach
was not feasible. We could also have used different systems
in the Extension, but we would have had a threat that the
systems were not similar in complexity. Therefore, we chose
to reuse the systems that were developed for the original study.
Providing the clone report for the extension part also could
have affected the results due to the expectancy of participants
to find clones in the system.

We can assume that any learning bias would have affected
all participants similarly and therefore should not have affected
the results. To reduce this threat to validity we only compared
the correctness of the tasks between the Replication and the
Extension. We did not compare the time required because time
was inclusive of the familiarization time. Because participants
were already familiar with the environment and the system,
the times for the Extension would have been misleading.

The students participated in the study as a part of class-

room assignment. To eliminate any performance biases, the
participants were informed that they would be graded on their
level of participation in completing all tasks, not in the level
of accuracy for the tasks.

C. External Validity

As with any study done using students in a classroom
setting, the external validity threats are the most serious. In
this case, the software systems we used were smaller than most
industrial systems. The participants were relatively novice
students compared with industrial practitioners. Finally, the
time limit of 75 minutes for the tasks is likely not realistic for
an industrial setting. The threats all suggest that the results
of these studies must be taken with caution if they are to
be applied to any but the most novice of developers. Further
studies with experts will help to reduce this threat.

VI. SUMMARY

This extended replication had two parts: (1) a close replica-
tion of a previous study and (2) an extension to the previous
study. The goal was to provide more insight into the questions
from the original study by confirming (or not confirming)
its results and by providing additional results that could give
insight into the effects of clones on maintenance. The results
of the original study showed some trends, but most results
were not significant. Specifically, the original study was not
able to validate:

1) whether it takes more time to fix a cloned bug than a
non-cloned bug, or

2) whether developers are more likely to correctly remove
a non-cloned bug than a cloned bug.

While the results of the replication study were also unable
to support (1), a similar trend was observed. Conversely, the
results of the replication did show that it was significantly
more difficult to completely maintain cloned bugs.

In the Extension part of the study, we verified that providing
developers with clone information and training them on how to
use it, helps in the maintenance of cloned bugs. We found that
the participants performed significantly better in completely

120



fixing the clone bugs when they had clone information than
when they did not. Overall, the evidence from this extended
replication indicates that it is more difficult to maintain cloned
code than non-cloned code. However, given appropriate clone
information and the proper training this difficulty can be
reduced.

As a future direction for this research we plan to replicate
the study using different sets of participants for the Replication
and the Extension parts, to remove the threat of learning bias.
We also plan to investigate the time factor in more detail to
determine why the results were not significant. It is possible
that measuring only a subset of the tasks involved in the bug
fixing process may provide better insight. Another important
type of replication is to perform the same experiment with pro-
fessional developers. Professional developers should be more
proficient in debugging tasks. Hence, it will be interesting to
compare the times to fix cloned and non-cloned bugs.

Finally, we would like to better understand the relationship
between TLX and the difficulty of fixing cloned bugs. In this
study we observed anomalous behavior in that the TLX for
PC was lower for the cloned bug than the non-cloned bug.
We hypothesized that the reason for this result could be the
complexity of the abstraction. All else being equal, a cloned
bug with multiple instances should have a higher TLX than
a non-cloned bug. Although we cannot draw a conclusion
from our results, this question might be interesting for future
research to gain insight into the ongoing discussion of whether
the presence of clones is detrimental to maintenance.

ACKNOWLEDGMENT

We thank the study participants for their time and effort.
This material is based upon work supported by the National
Science Foundation under Grant No. 0915559.

REFERENCES

[1] C. Andersson, “A replicated empirical study of a selection method for
software reliability growth models,” Empirical Softw. Engg., vol. 12,
no. 2, pp. 161–182, Apr. 2007.

[2] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in 11th European Conference on Software Main-
tenance and Reengineering, 2007, pp. 81–90.

[3] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. E.
Hassan, “An empirical study on inconsistent changes to code clones at
release level,” in Proceedings of the 2009 16th Working Conference on
Reverse Engineering. Washington, DC, USA: IEEE Computer Society,
2009, pp. 85–94.

[4] D. Chatterji, J. Carver, B. Massengil, J. Oslin, and N. Kraft, “Measuring
the efficacy of code clone information in a bug localization task: An
empirical study,” in International Symposium on Empirical Software
Engineering and Measurement, 2011, pp. 20–29.

[5] J. R. Cordy, T. R. Dean, and N. Synytskyy, “Practical language-
independent detection of near-miss clones,” in Proceedings of the
2004 conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 2004, pp. 1–12.

[6] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger, “Relation of code clones
and change couplings,” in Proceedings of the 9th international confer-
ence on Fundamental Approaches to Software Engineering. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 411–425.

[7] J. Harder and R. Tiarks, “A controlled experiment on software clones,” in
20th IEEE International Conference on Program Comprehension, 2012,
pp. 219–228.

[8] J. Harder and N. Göde, “Cloned code: stable code,” Journal
of Software: Evolution and Process, pp. n/a–n/a, 2012. [Online].
Available: http://dx.doi.org/10.1002/smr.1551

[9] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): results of empirical and theoretical research,” in Hancock, P.
and Meshkati, N. eds. Human Mental Workload, North-Holland Elsevier
Science, 1988.

[10] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proceedings of the 31st International Conference on
Software Engineering. Washington, DC, USA: IEEE Computer Society,
2009, pp. 485–495.

[11] N. Juristo and S. Vegas, “Using differences among replications of soft-
ware engineering experiments to gain knowledge,” in Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering
and Measurement. Washington, DC, USA: IEEE Computer Society,
2009, pp. 356–366.

[12] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” consid-
ered harmful: patterns of cloning in software,” Empirical Softw. Engg.,
vol. 13, no. 6, pp. 645–692, Dec. 2008.

[13] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in Proc. 2004 Int.
Symposium on Empirical Software Engg., 2004, pp. 83–92.

[14] B. Kitchenham, “The role of replications in empirical software
engineering–a word of warning,” Empirical Softw. Engg., vol. 13, no. 2,
pp. 219–221, Apr. 2008.

[15] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in Proceedings of the 14th Working Conference on Reverse
Engineering. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 170–178.

[16] ——, “Is cloned code older than non-cloned code?” in Proceedings of
the 5th International Workshop on Software Clones. New York, NY,
USA: ACM, 2011, pp. 28–33.

[17] J. Lung, J. Aranda, S. M. Easterbrook, and G. V. Wilson, “On the
difficulty of replicating human subjects studies in software engineer-
ing,” in Proceedings of the 30th international conference on Software
engineering. New York, NY, USA: ACM, 2008, pp. 191–200.

[18] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and
K. A. Schneider, “Comparative stability of cloned and non-cloned code:
an empirical study,” in Proceedings of the 27th Annual ACM Symposium
on Applied Computing. New York, NY, USA: ACM, 2012, pp. 1227–
1234.

[19] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K.-i. Matsumoto,
“Software quality analysis by code clones in industrial legacy software,”
in Proceedings of the 8th IEEE Symposium on Software Metrics, 2002,
pp. 87–94.

[20] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
7th IEEE Working Conference on Mining Software Repositories, 2010,
pp. 72–81.

[21] F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H. Travassos,
M. Mendonça, and S. Fabbri, “Replicating software engineering exper-
iments: Addressing the tacit knowledge problem,” in Proceedings of
the 2002 International Symposium on Empirical Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 7–.

[22] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” Empirical Softw. Engg.,
vol. 13, no. 2, pp. 211–218, Apr. 2008.

[23] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Softw. Engg., vol. 15, no. 1, pp. 1–34, Feb. 2010.

121


