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Abstract—Much recent research effort has been devoted to 

designing efficient code clone detection techniques and tools. 

However, there has been little human-based empirical study of 

developers as they use the outputs of those tools while 

performing maintenance tasks. This paper describes a study 

that investigates the usefulness of code clone information for 

performing a bug localization task. In this study 43 graduate 

students were observed while identifying defects in both cloned 

and non-cloned portions of code. The goal of the study was to 

understand how those developers used clone information to 

perform this task. The results of this study showed that 

participants who first identified a defect then used it to look for 

clones of the defect were more effective than participants who 

used the clone information before finding any defects. The 

results also show a relationship between the perceived efficacy 

of the clone information and effectiveness in finding defects. 

Finally, the results show that participants who had industrial 

experience were more effective in identifying defects than those 

without industrial experience. 

Keywords-software clones; empirical studies; clone report; 

bug localization; software maintenance 

I. INTRODUCTION 

Recent estimates indicate that software maintenance 
costs account for as much as 70 to 90% of total software cost 
[4, 9] Techniques and tools that can reduce the effort spent 
by developers on these activities are required to reduce 
maintenance costs. One characteristic of a software system 
that can adversely affect its comprehensibility is the presence 
of similar or identical segments of code, or code clones. 

A common approach employed by developers while 
coding is to identify sections of code that can be copied, 
pasted and possibly edited, rather than writing completely 
new code [14]. Other developer activities lead to the 
introduction of code clones, including: language construct 
recurrence, pattern or paradigm adherence, and framework 
reuse. On average, five to twenty percent of a software 
system is cloned code [20]. For example, CCFinder, a 
popular clone detection tool [12] determined that almost 
30% JDK v.1.3.0 is cloned code. CP-Miner, a tool for 
finding copy-paste bugs, found that over 22% of the code in 
version 2.6.6 of the Linux kernel was cloned [16]. In 
addition, one study reported over 59% cloned code in a 
COBOL payroll application [8]. 

There are conflicting views on whether code clones are 
problematic. Earlier work by Fowler et al. classified code 
clones as a ‘bad smell’ that would increase the difficulty of 

maintenance [10]. However, more recent work indicates that 
code clones may not be as harmful as originally believed [14, 
19]. In fact, code clones may actually improve productivity 
[13]. Rahman et al. found little empirical evidence that 
clones negatively affect software maintainability but did find 
that cloned code may be less fault prone than non-cloned 
code [17]. There is agreement that a developer’s awareness 
of code clones is critical for performing correct (and 
complete) software maintenance.  

Researchers have recently developed both techniques for 
clone detection and tools to implement those techniques. 
However, additional data about the clones in the system are 
needed to assist developers who must make decisions 
regarding these clones during software maintenance tasks. 
For example, when a change is to be made to one clone 
fragment in a clone group (collection of clone fragments), a 
developer must determine whether the change should be 
made to all other clone fragments in that clone group. Such 
decisions are critical, because if the developer makes an 
incorrect decision, then a bug could be introduced. A 
developer's analysis and decision-making process regarding 
code clones can be complicated further by the sheer volume 
of clones that are present in a large software system. 

Due to the lack of empirical studies in the literature, it 
appears to be assumed by the creators of the clone detection 
approaches that if a developer is provided with the report 
from a code clone detection tool, they will know how to use 
it to perform various software engineering tasks. In searching 
the literature, we were unable to find any human-based 
empirical studies that verify the usefulness of the information 
provided in the code clone reports that are output from the 
tools. Therefore, the main motivation behind this study was 
to observe how developers use the output from a code clone 
tool to perform the maintenance task of bug localization, 
without being given specific instructions on how to use the 
tool output. Often, in an industrial setting, developers use 
new tools without the benefit of detailed training. So, our 
experimental setup mirrors that reality. 

To focus the study, we developed the following research 
questions: 

 RQ 1: How do developers use the information from a 
clone report produced by a code clone detection tool 
while performing a bug localization task? 

o RQ 1.1: Is the information in a clone report 
useful for finding defects? 



o RQ 1.2: Does the information from the clone 
report lead developers to identify false-
positives? 

 RQ 2: Do novice and professional developers use the 
information from the clone report differently? If so, 
how? 

Our long term goal is to develop methods to improve the 
usefulness of code clone reports (and other clone-related 
artifacts). The results of this study and other follow-on 
studies will help guide that work. 

The remainder of the paper is organized as follows: 
Section 2 reviews related work. Section 3 describes the 
study. Section 4 contains a detailed data analysis. Section 5 
describes the threats to validity. Section 6 concludes the 
paper and describes plans for future work. 

II. RELATED WORK 

There has been a considerable amount of research 
conducted on clone detection approaches and tools. For 
example, Bellon et al. [2] use eight open source software 
systems to quantitatively compare and evaluate six clone 
detectors, including CCFinder, which we used in our study. 
Roy et al. [18] qualitatively compare and evaluate over 40 
clone detection techniques and tools using a unified 
conceptual framework. 

Other recent empirical studies, such as those by 
Bettenburg et al. [3] and Thummalapenta et al. [19] 
investigate the genealogical traits of code clones. That is, 
these studies track clone groups across multiple revisions of 
software projects to draw conclusions about developers' 
knowledge of clones. For example, Bettenburg et al. reported 
that the majority of long-lived clones in Apache Mina and 
jEdit are instances of the replicate and specialize pattern, in 
which code is cloned and then customized to implement a 
new feature. Moreover, the authors found that errors to 
replicate-and-specialize clones were not introduced at a high 
rate by inconsistent changes. Based on this finding, the 
authors concluded that developers of both Mina and jEdit are 
aware of those long-lived clones and are able to effectively 
manage their independent evolution. 

On the other hand, there is a dearth of human-based 
empirical studies that focus on understanding how software 
developers use clone detection and analysis tools to maintain 
cloned code. To our knowledge, only two such studies have 
been published. [7, 14].  

de Wit et al. [7] developed CLONEBOARD, an Eclipse 
plug-in that tracks changes to clones to help prevent 
inconsistently modified clones. To evaluate 
CLONEBOARD, de Wit et al. conducted a user study of 
seven software engineers performing a programming 
assignment. The study results indicated that the developers 
saw some value in CLONEBOARD. However in practice 
CLONEBOARD failed to meet the expectations of the users 
when fixing clone related bugs. The users believed that it 
would need a better user interface to be more useful. 

Kim et al. [14] performed an ethnographic study of copy-
and-paste programming practices. They observed nine 
developers for about 10 hours of Java/C++/Jython 
programming. The researchers manually logged edit 

operations (copy, cut, paste, delete, undo, and redo). As these 
operations were performed, the developers indicated their 
intention for copy-and-pasting. Kim et al. also used an 
Eclipse plug-in to automatically track 50 hours of Java 
source code edits by five other developers. The researchers 
used this information to infer the programmers’ intentions 
for copying-and-pasting. They then interviewed each 
programmer twice to confirm the accuracy of the inferences. 
The study conclusion was that developers typically wait until 
after several copy-and-paste operations before restructuring 
the code. 

Balint et al. [1] performed a retrospective study in which 
they created an author-centric view of clone evolution in 
Apache Ant, ArgoUML, and Ptolemy II. Though the authors 
did not directly observe developers, they mined software 
repository data to track the activities of project developers 
over time. By analyzing visualizations of the clone evolution 
data, Balint et al. identified five cloning activity patterns: (1) 
consistent line/block cloning with unique author, (2) creation 
of clones by multiple authors using consistent block cloning, 
(3) consistent line/block cloning with multiple authors, (4) 
inconsistent line cloning fixed by same author, and (5) 
inconsistent line cloning fixed by different authors. The 
results indicated that the rate of detection of inconsistent 
changes correlated with the number of developers. Thus, the 
specific developers involved should be considered when 
analyzing code clones. 

Other researchers have studied the potential impacts that 
code clones can have on the software development process. 
Krinke et al.’s [15] study of open source software indicated 
that half of the changes to code clone groups are inconsistent 
with each other. A study by Cordy et al. [6] reports that 
removing clones actually increases risk in large software 
systems. Similarly, Kapser et al. [13] claim that clones have 
a positive impact on maintainability. They describe several 
patterns of cloning and discuss their benefits for the long 
term evolution of software. Instead of eradicating repeated 
code there should be effort towards developing tools to 
support long term maintenance of clones. Our study takes a 
step in this direction by providing insight into how 
developers use code clone information. 

We presented a preliminary version of this work at the 
PLATEAU 2010 workshop [5]. 

III. STUDY OVERVIEW 

The goal of this study was to understand how developers 
use the information generated by a code clone detection tool 
to support a standard maintenance. task. To make the study 
tractable, the maintenance task was bug localization (i.e., 
identifying the source code elements that must be modified 
to correct a bug) rather than bug repair. This choice of tasks 
is logical because clone information is more useful in 
identifying cloned code that must change than it is in actually 
changing the code. Section III.A  describes the application 
used in the study. Section III.B describes the clone 
information used in the study. Then, Section III.C gives a 
detailed description of the study design. Section III.D 
explains the data that was collected during the study. Finally, 



Section III.E describes the pilot study conducted prior to 
performing the main study. 

A. Software System: Apache Ant 1.6.5 

Because the difficulty of the bug localization task is highly 

dependent upon the software system being examined, we 

determined that the software used in this study should:  

 be large enough to make bug identification a 

nontrivial task; 

 be small enough that participants could perform the 

bug localization task in one hour; and 

 contain both a cloned bug and non-cloned bug to 

control for the placebo effect. 
To meet these requirements we chose Apache Ant version 

1.6.5. Apache Ant automates the software build process, 
similar to Make. Version 1.6.5 contained two distinct bugs 
that met the requirements. Below is a detailed description of 
the two bugs. 

We retrieved the two bug reports from the Apache 
Bugzilla repository. The bug IDs are 38175

1
 (affected 

Copy.doFileOperations and Copy.doResourceOperations) 
and 38082

2
 (affected Scp.parseUri). Both bugs were reported 

in version 1.6.5. However, the first bug was actually 
introduced into the trunk after the release of version 1.6.5. 
Thus, revision 367315 of the trunk of the Ant Subversion 
repository was used in this study. This revision was the last 
in which both bugs existed. In particular, the bugs in 
Copy.doFileOperations, Copy.doResourceOperations, and 
Scp.parseUri were repaired in revisions 367316, 367342, 
and 417590, respectively. The Bugzilla repository only 
provides the reproduction rules for the Windows platform. 
However, because the participants in our study worked on a 
Unix platform, we also provided the reproduction rules for 
the Unix platform. 
 
Bug 1: The failonerror=”no” doesn’t work for locked file. 
When we try to perform a recursive copy in a directory that 
contains a locked file, the copy fails before the end of the 
whole copy, even if I have the attribute failonerror set to 
“no”.  
 
Reproduction: If Mozilla Thunderbird is open, there is a 
locked file in the profile directory (parent.lock). Fig. 1 shows 
the reproduction of Bug 1. 
 
Bug 2: SCP Task password with special characters. The 
scp task does not handle password with special characters 
like “@”. Fig. 2 shows the reproduction of Bug 2. 
 

Bug 1 appeared in two clone fragments within the same 
clone group (and within different methods of the same class). 
We use the term defect to refer to an instance of a bug. In 
this case, there were two defects related to Bug 1. Bug 2 
appeared in only one code fragment (i.e., no clones). There 
was only one defect related to Bug 2. Using the defect 

                                                           
1
 https://issues.apache.org/bugzilla/show_bug.cgi?id=38175 

2
 https://issues.apache.org/bugzilla/show_bug.cgi?id=38082 

identification form in Fig. 6, each participant had the 
opportunity to identify three defects (both instances of bug 1 
and one instance of bug 2). The two bugs were actual, user-
reported bugs available in the Apache Ant Bugzilla 
repository. We used solutions posted in Bugzilla to verify the 
correctness of the participants’ solutions. Because the 
solutions were available on the web, the participants were 
not allowed access to the internet during the study. 

 

Figure 1. Bug 1 

B. The clone report 

We used CCFinder version 10.2.7 to detect the clones.  
CCFinder records clone pairs, to which it assigns unique 
identifiers, in a plain text file. In addition, for each cloned 
code fragment, the token range is recorded in a collection of 
plain text files (one file for each input file). CCFinder 
provides an industrial-strength GUI to analyze and visualize 
the detected clones. However, to obviate the need for 
training the participants to use this complex GUI, we post-
processed the plain text files and provided a simplified 
report, described below. The post-processing included 
merging related clone pairs to form clone groups and 
converting the token ranges to literal source code fragments. 

Code Clone Report Format: The forms of clone group 
entries and source code are shown in Fig. 3. The format was 
as follows: clone group entries (separated by blank lines), a 
horizontal rule (60 dashes), and source code entries 
(separated by two horizontal rules (40 dashes). 

 

Figure 2. Bug 2 

Unix: 

<copy failonerror="no" todir="test"> 

<fileset dir =  

       "/home/ubuntu/.thunderbird"> 

            <include name="**/*" /> 

</fileset> 

</copy> 

 

Windows: 

<copy failonerror="no" todir="test"> 

<fileset dir="C:\Documents and    

    Settings\User\Application  

    Data\Thunderbird\Profiles"> 

            <include name="**/*" /> 

</fileset> 

</copy> 

 

 

<scp todir = 

”user:p@ssword@cs.ua.edu:/home/ubuntu/

”> 

 <fileset dir=”src_dir” /> 

</scp> 

 



C. Study Design 

This section describes the participants, the training and 
the task performed. 

 
Participants: 43 participants were drawn from graduate 
software courses, 13 from the University of Alabama (UA) 
and 30 from the University of Alabama in Huntsville (UAH). 
Some participants were novices (i.e. they had little or no 
industrial experience) while others had industrial experience. 

 
The Training: In both courses, the course instructors gave 
the participants a brief lecture about code clones and their 
impact on software development and maintenance. These 
lectures helped the participants become familiar with the 
terms code clone and code clone report. The lectures did not 
give the participants specific guidance on how to use the 
clone information to perform various software engineering 
tasks. This information was not included in the training 
because the goal of the study was to test the efficacy of the 
clone report for the average developer, not one with detailed 
knowledge about code clones and the use of code clone 
information. 

After the training, the participants received an overview 

document containing the following information needed to 

complete the experimental tasks. 

1. A brief introduction to code clones, an overview of 

the Apache Ant system and definitions of important 

terms; 

2. The directory structure of Apache Ant 1.6.5; and 

3. Information on how to reproduce the two bugs. 

The participants also received the Ant documentation, the 

j2dsk-1.4.2 documentation, and the clone report. 

 
The Task: Based on the information provided during 
training, the participants were instructed to identify the 
specific location (file, method and line number) that should 
be modified to correct each bug. They were told that they 
should identify all portions of the code that must be modified 
to correct the bug. The participants were not expected to 
actually make the repair. All tasks were conducted in a Linux 
environment. The participants were allowed to use the 
standard Linux utilities “find” and “grep” within the terminal 
or were allowed to use the search dialog box provided by 
Ubuntu. All analysis was performed statically (i.e., the 
participants could not compile or execute the code). We used 
this approach to avoid introducing any bias due to the 
participants’ familiarity with the development environment 
(e.g. the compiler or the execution environment). We wanted 
to ensure we focused the participants on the clone 
information rather than the functionalities of the 
development tools. A similar approach is used in the study 
by Fry et al. [11]. Once a participant identified a bug, he 
recorded his findings on the defect identification sheet 
described in the next section. 

D. Data Collection 

We collected two types of data: data from naturalistic 
observation and self-reported data.  

 
Naturalistic Observation During the bug localization tasks, 
two of the authors stood behind the participants and watched 
over their shoulders (i.e., as passive observers). In the study 

Clone Group: UID Clone Group: 2285 

   FILE0: Lines (X0-X1)    Copy.java: Lines (881-891) 

   FILE1: Lines (y0-y1)    Copy.java: Lines (795-804) 

--------------------------- --------------------------- 

--------------------------- --------------------------- 

Clone Group ID: UID Clone Group ID: 2285 

File: /path/to/File0 File: …/src/main/org/apache/tools/ant/taskdefs/Copy.java 

Line: X0-X1 Line: 881-891 

<<LINES X0-X1 of FILE0>> catch(IOException ioe) { 

    String msg = “Failed to copy” + fromResource 

    … 

 } 

 

File: /path/to/FILE1 File: …/src/main.org/apache/tools/ant/taskdefs/Copy.java 

<<LINES Y0-Y1 of FILE1>> Line: 795-804 

 Catch(IOException ioe} 

    String msg=”Failed to copy” + fromFile + “to” + toFile 

    … 

 } 

--------------------------- --------------------------- 

--------------------------- --------------------------- 

 

(a) Clone Report Template  (b) Clone Report Excerpt 
 
 

Figure 3. Format of the Clone Report 



by Kim et al. [14] (which was mentioned earlier), the 
researchers began by using naturalistic observation. They 
later shifted to automated data collection when they noticed 
that the observers were creating an unnecessary disturbance 
to the participants. In our case, the observers did not interfere 
with or disturb the activities of the participants. In addition, 
the observers were able to answer the participants’ questions 
about the conduct of the study. We considered adapting an 
automated data collection process similar to Kim et al., but 
because this approach has its own share of shortcomings, we 
chose not to use it.  

Fig. 4 illustrates the experimental setting. The 
participants performed the study in groups of four. To 
observe all four participants simultaneously, the two 
observers had to observe multiple participants as follows. 
Each observer was responsible for two participants at a time. 
Every two minutes, they alternated between observing each 
of their two participants. After 30 minutes (one-half of the 
experimental session), the observers switched positions and 
observed the other two participants for the next 30 minutes.  

For example, referring to Fig. 4, Observer 1 began by 
observing Participant 1 for two minutes while Observer 2 
observed Participant 3. After two minutes, Observer 1 
observed Participant 2, while Observer 2 observed 
Participant 4. After two minutes, Observer 1 and 2 returned 
to observing Participants 1 and 3, respectively. This pattern 
continued for 30 minutes. At that point, Observer 1 began 
observing Participants 3 and 4 while Observer 2 began 
observing Participants 1 and 2, switching every two minutes 
just as before.  

The motivation behind this somewhat complicated data 
collection method was to help ensure the accuracy and 
consistency of data collected. The observation interval was 
set at two minutes so that it was long enough for the 
observers to observe what the participants were doing while 
being short enough for making as many iterations as possible 
to provide good insight into each participant’s process. Also, 
by having the observers switch places after 30 minutes, we 
helped ensure that data was gathered consistently regardless 

of the observer. The pilot study, discussed later in this 
section, proved to be useful in finalizing the length of the 
observation interval. 

In sessions with less than four participants, the observers 
observed the participants for two minutes, then did not 
observe them for two minutes to ensure that the same data 
was collected throughout the study. For example, if there 
were only 3 participants, Observer 2 would observe 
Participant 3 for two minutes and then observe no one for 
two minutes. 

The observers maintained a ‘fly on the wall’ perspective 
during the experiment session unless the participants 
specifically asked questions. The questions asked by the 
participants included: “What exactly are we supposed to do 
here?”; “How do I read the clone report?”; “Can I execute 
the code?”; “Can I access the internet?”; and “I am not able 
to find the bug, what should I do?”. The observers kept their 
answers as brief as possible and did not answer certain types 
of questions that would have unfairly aided a participant in 
completing the task. In this way the observers strove to not 
introduce any type of bias into the study.  

During the naturalistic observation, the observers 
recorded the following information:  

 the resources used (i.e. the code, the code clone 

report, the report form or the overview sheet);  

 actions performed; and  

 subjective notes about the participant’s actions.  
To record this information, the observers used the 

Observer’s Data Recording Form shown in Fig. 5. 

 
Self-Reported Data Participants self-reported data on two 
data collection forms: the defect identification form and the 
post-observation questionnaire. The participants used the 
defect identification form (Fig. 6) to report the identified 
defects. The form included places to record a time stamp, 
defect location, description of defect, steps taken to locate 
the defect and how they would fix the defect. Even though 
only bug one had two associated defects (the original and the 
clone), so as not to bias the results, the defect form provided 

 

 

Figure 4.  Study Design 



space to report two defects for each bug. So the form 
contained four spaces for defect reports. Such a form allowed 
for the possibility of three correct defects and one false 
positive.. The information from this form helped us calculate 
the number of defects detected, the number of false positives, 
if any, and the time required to find the defects.  

On the post-observation questionnaire the participants 
reported their level of experience with software 
development, bug localization, code clones and the 
CCFinder tool. The participants also could give their opinion 
of the usefulness of the clone report for bug localization. 

E. Pilot Study 

As good experimental practice, we conducted a pilot 
study to validate and debug the study design. Four graduate 
students, who were not going to participate in the main 
study, participated in the pilot study. The pilot study took 
place in a similar environment as the main study. The 
participants performed the same task on the same system. 
The results of the pilot study motivated some changes to the 
originally planned study design. 

First, during the pilot study, the observers used a one 
minute observation interval. We determined that one minute 
was not long enough to observe and record the necessary 
information. As a result, we used two minute intervals in the 
main study. This two minute interval ensured that the 
observer could look closely at the work of the participants 
and record more accurate data. 

Second, the pilot study participants suggested some other 
minor study design changes. These changes were mostly 
concerned with the overview document and the defect 
identification sheet to arrive at the versions used in the main 
study. For example, we rearranged the sections of the 
overview document and rephrased some questions on the 
defect identification sheet. 

IV. DATA ANALYSIS 

This section is organized around the research questions 
presented in Section 1. We use an alpha value of 0.05 for 
judging statistical significance in all tests. Before presenting 
the analyses, we first give an overview of the data. 

A. Overview of the Data 

Each participant can be characterized using two variables. 

The first variable, experience came from the post-

observation questionnaire. The second variable, clone report 

usage strategy, came from the observational data. 

For the experience variable, on the post-observation 
questionnaire each participant used a five-point Likert scale 
to report his level of experience. Participants who had either 
no experience or only classroom experience were 
characterized as novices (23 participants). Those who had 
industrial experience were characterized as professionals (20 
participants). 

For the clone report usage strategy variable the observers 
noticed that each participant seemed to employ one of two 
strategies when using the clone report. The first strategy, 
called after, was to use the code clone information to search 
for cloned code only after first identifying a defect. The 
second strategy, called before, was to use the code clone 
information before identifying a defect. Because many 
participants were unfamiliar with code clone information, 
during the first 10 minutes a participant was allowed to 
familiarize himself with the clone report and still be 
characterized as using the after strategy. 

Fig. 7 illustrates each participant based on the number of 
defects found and whether he or she reported the false 
positive. The vertical axis represents the participant’s clone 
report usage strategy (before or after) and the horizontal 
axis represents the participant’s level of experience. These 
two axes partition the space into four quadrants based on 
these two variables. Each of the concentric circles contains 
data points representing participants who found a specific 
number of defects. Within each circle, the distance from the 
center point is meaningless. For example, the participants 
represented by the two data points lying in the lower right 
quadrant of the outermost circle each found three defects. 
One of those participants also reported the false positive. The 
largest group of participants was those who found zero 
defects. 

Prior to this study, most participants had little experience 
identifying defects in large software systems. The data 
showed that participants, who had some software 
development experience, as reported in the post observation 
questionnaire, were more confident and found more defects 
than those without such experience. The few participants 
who found all three defects had all worked on multiple 
industrial software projects. Another observation from this 
data is that in spite of having a detailed clone report; several 
participants were able to locate the initial defects but did not 
find the second defect for Bug 1 (i.e. the clone) 

 

 
 

Figure 5. Observers’ data recording form 

 

 

Figure 6. Defect Identification Form 



B. RQ 1.1 –Is the information in a clone report useful for 

finding defects? 

On the post observation questionnaire the participants 
used a 5-point Likert scale (1-not effective at all to 5-highly 
effective) to report the efficacy of the clone report for the 
bug localization task. The scatterplot in Fig. 8 shows the 
relationship between this efficacy value and the number of 
defects found by each participant. Because neither variable is 
normally distributed (based on the Shapiro-Wilk test) we 
conducted a conducted a Kendall’s tau_b correlation. The 
correlation was .196 and was not significant (p=.13). 

We also split the participants into two groups: those that 
had a positive impression of the clone report (4 and 5 on the 
scale) and those that had a negative impression (3 or lower). 

We then performed a t-test to compare the average number 
of defects found by the participants in each group. The 
participants who had a positive impression of the clone 
report were more effective than those with a neutral or 
negative impression of the clone report (1.45 defects vs. .78 
defects on average). This difference was not significant (t41 = 
1.946; p = .059).  

We suspected that the analysis may be skewed by the 
large number of participants who found no defects. 
Therefore, to further analyze these results, the 19 participants 
who found no defects were excluded and the data 
reanalyzed.  Fig. 9 shows a scatter plot of the data. In this 
case the Kendall’s tau_b coefficient increased to .468 and 
was significant (p=.009). In addition, the t-test showed that 

 

Figure 8. Positive relation between number of clones found and the 

clone efficacy 

 

Figure 9. Positive relation between number of clones found and the 

clone efficacy excluding the data points for which number of bugs 
found was zero. 

 

Figure 7. Overview of Data 



those who found the clone report useful were significantly 
more effective (2.29 defects vs. 1.47 defects) (t22 = 2.739, p 
= .012) than those who did not. 

The data does not allow us to draw any conclusions 

about causality. We are not sure whether 1) finding the 

clone report useful caused the increase in defects found, 2) 

finding more defects resulted in a more positive view of the 

clone report, or 3) some other variable influenced the 

results. Further study is required. 
As a second analysis to address this question, we 

investigated whether the clone report usage strategy 
impacted effectiveness. If a participant fully understood how 
to use the clone report, he would realize that the clone report 
was only useful after identifying a defect to help search for 
clones of the problematic code. Because the clone report is 
merely a list of cloned code, it is not useful for identifying 
the original defect. Fig. 10 and 11 illustrate the overall trend 
that participants who used the clone report after finding a 
defect tended to identify more real defects and fewer false 
positives than those who used it before finding a defect. The 
qualitative observations indicated that many of the thirty-five 
participants who used the clone information before finding a 
defect appeared to be attempting to use the clone information 
to locate the initial defects. This observation suggests that 
developers need at least a small amount of training on how to 
use clone information in order to use it effectively. 

Following on this discussion of clone report usage 
strategy, we conducted two analyses. First, we tested 
whether either strategy made the participants more effective. 
Those who used the clone report after finding a defect found 
an average of 1.62 defects compared with 0.8 defects (out of 
a possible 3) for those who used the clone information 
before finding a defect. An independent samples t-test 
showed that this difference was significant (t41 = -2.146; 
p=.038). Second, we tested whether the participants who 
used the clone information after finding a defect were more 
effective in finding the cloned defect related to Bug 1. 
Twenty-five percent of the participants who used the clone 

information after first finding a defect did find the cloned 
defect whereas only 5.71% of the participants who used the 
clone information before finding a defect were successful in 
finding the cloned defect. However, this difference was not 
significant (t41 = -1.713; p = .094). 

Additionally, we computed the percentage of time each 
participant spent using each of the three resources provided 
to them (i.e., the clone report, the code base and the 
documentation). During each observation, the observer noted 
which resource(s) the participant used. If a participant used 
more than one resource, the time was divided accordingly. 
For example if during an observation a participant used only 
the clone report, 100% of the time was assigned to the clone 
report. If a participant used both the clone report and the 
documentation then each resource was assigned 50% of the 
time. Similarly, if the participant used all three resources, 
each resource was assigned 33% of the time. We made an 
assumption that the distribution of time between the 
resources would be the same for the time that each 
participant was not being observed. 

Based on the number of defects found, we divided the 
sample into three groups: those who found no defects, those 
who found at least one defect, but not the cloned defect, and 
those who found all three defects, including the cloned 
defect. Table 1 shows the average percentage of time the 
participants from each group used the resources. The 
participants who found no defects used the clone information 
the most, followed by those who actually found the cloned 
defect. It is not surprising that the participants who found the 
cloned defect used the clone information more than those 
who did not find it. It is surprising to see that the participants 
who found no defects used the clone report more than 
anyone else. 

A chi-square test indicated that the distributions among 
the three groups was significantly different (X

2
4 = 13.727; p 

= .02). At this point we cannot conclusively explain this 
result. It seems to indicate that those who found no defects 
were unsure of how to use the clone report and therefore 
were using it incorrectly. Logically, if a participant did not 

 

Figure 10. Clone report usage 

 
 

Figure 11.  Correct vs. Incorrect Use of Clone Report 



find any defects, they should not have had little use for the 
clone information, as it is most useful in finding cloned 
defects 

C. RQ 1.2 – Does the information from the clone report 

lead developers to identify false-positives? 

This research question evaluated whether the clone report 
misleads a developer, resulting in the reporting of false 
positives while looking for the clone of a defect. None of the 
eight participants who used the before strategy reported a 
false positive. All five participants who did report a false 
positive used the after strategy. While this result was not 
significant (likely due to small number of participants who 
used the before strategy), the fact that no one who used the 
before process reported a false positive suggests that there 
may be an important phenomenon here. 

D. RQ 2 – Novice vs. Professionals 

To determine the effects of the participants’ previous 
programming experience, we compared the effectiveness of 
novices and professionals. On average, the professionals 
identified more defects than the novices (1.53 vs. .43 
respectively). This difference was significant (t41 = -4.222; p 
< .001). In addition, all four participants who correctly 
identified the cloned defect were professionals. 

The professionals also tended to employ the after 
strategy of using the clone report more often than the novices 
did. Table 2 is the contingency table showing the 
distributions of these two variables. Even though a chi-
square test did not show a significant result (X

2
 = 1.010; p= 

.315), there is a positive trend.  

V. THREATS TO VALIDITY 

Construct Validity: We made the assumption that using 
the after strategy would be more effective based on theory 
and on participant observation. It is possible that this 
assumption is incorrect or that the method we used to 
partition the participants into the before group and the after 
group was biased. Either of these problems could introduce a 
threat to construct validity. 

Internal Validity: There was potentially a subject 
expectancy threat that could have arisen from the fact that we 
gave the participants a clone report. The participants could 
have assumed that the clone report was supposed to be used 
for the bug localization task without fully understanding how 
to properly use it. We chose a system written in Java because 
we assumed most students would be familiar with that 

language. If someone was not familiar with Java, it could 
bias the results. Ideally the participants should have had an 
option to select the programming language with which they 
were most familiar. The participants performed the task in a 
Linux environment which could be a validity threat if they 
were not familiar with Linux and the search features it 
provides. Finally, to prevent a threat to validity of the 
participants being able to locate the solutions on the web, we 
did not provide internet access. Similarly, the participants 
were not allowed to execute the code. This approach reduced 

a threat to internal validity that the results may be caused by 
participants’ familiarity with the development and execution 
tools.. External Validity: The participant population 
consisted of both novices and professionals, reducing a threat 
to external validity. Conversely, the task was performed in 
isolation rather than as part of a complete maintenance 
process, which may introduce a threat to external validity. 
The task was a realistic task (i.e. bug localization), but it was 
not complete (i.e. the participants did not fix the bug). Also, 
because we increased internal validity by preventing the 
participants from compiling or executing the code, the way a 
developer would typically work, there is a threat to external 
validity. Finally, the participants were not trained in using 
the clone report. Although this lack of training could 
introduce a threat to validity, one of our study goals was to 
see how people would use the report without training.  

VI. CONCLUSION AND FUTURE WORK 

There have been few human-based empirical studies focused 
on code clones and the use of information from clone 
reports. This exploratory study provides insights into how 
developers use the information from a clone report. Some 
concrete conclusions from the study are: 

 Initial evidence shows that, without training, most 
participants employed the before strategy of clone 

TABLE I.  PERCENTAGE USE OF RESOURCES 

                                                            Means of percentage use of resources 

 Clone Report Code Base Documentation 

Defects found by 

the participants 

No defects found (19) 27.95% 54.16% 17.89% 

One or two defects found (20) 14.5% 74.5% 10.7% 

All three defects found (4) 22.75% 71% 6.25% 

 

TABLE II.  NOVICE VS. PROFESSIONALS 

 Use of clone report 

Before After Total 

Novice 20 3 23 

Professional 15 5 20 

Total 35 8 43 

 



report usage, which appears to be less useful than the 
after strategy. Some researchers argue that clone 
detection tools are needed to support the maintenance 
process because those tasks are often assigned to entry 
level developers. However, if those developers are not 
able to effectively use the clone report, such clone 
detection tools are of little use to them. 

 There is a relationship between effectiveness and 
employing the after strategy of clone report use, 
although we have yet to establish a causal relationship. 

 In a large software system the clone report might not 
help developers locate the initial defect, but it will help 
them locate clones of that defect.  

 Use of the clone report may also reduce reporting of 
false positives. 

As this was an exploratory study, there are a number of 
replications that we plan to conduct. Because the lack of 
training on how to use clone information was a threat to 
validity, a replication will be done to control for clone 
detection training (i.e. by training half of the participants 
how to use the clone information and not training the other 
half). Another replication will be performed in an 
environment where the participants could execute the code 
and repair the defects to see whether the results differ. 
Another replication will look at defects involving more than 
two instances of cloned code. For example, assume there are 
eight clones, but only three cause defects.  

We will also investigate the false positives in more detail. 
We will look at the effects of the clone report on false 
positive identifications For example, if someone incorrectly 
identifies a defect and then, using the clone report, do they 
identify additional false positives?  

Finally, this study serves as a starting point for a series of 
studies in which we will evaluate the effectiveness of various 
types of clone detection tools as well as various methods for 
presenting clone information to developers. 
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