
Measuring the Efficacy of Code Clone Information in a Bug Localization Task:

An Empirical Study

Debarshi Chatterji
1
, Jeffrey C. Carver

1
, Beverly Massengill

2
, Jason Oslin

1
 and Nicholas A. Kraft

1

1
Department Of Computer Science

University of Alabama

Tuscaloosa, AL, USA

{dchatterji, oslin002}@ua.edu

{carver, nkraft}@cs.ua.edu

2
Department of Computer Science

Tennessee Tech University

Cookeville, TN, USA

bamassengi21@tntech.edu

Abstract—Much recent research effort has been devoted to

designing efficient code clone detection techniques and tools.

However, there has been little human-based empirical study of

developers as they use the outputs of those tools while

performing maintenance tasks. This paper describes a study

that investigates the usefulness of code clone information for

performing a bug localization task. In this study 43 graduate

students were observed while identifying defects in both cloned

and non-cloned portions of code. The goal of the study was to

understand how those developers used clone information to

perform this task. The results of this study showed that

participants who first identified a defect then used it to look for

clones of the defect were more effective than participants who

used the clone information before finding any defects. The

results also show a relationship between the perceived efficacy

of the clone information and effectiveness in finding defects.

Finally, the results show that participants who had industrial

experience were more effective in identifying defects than those

without industrial experience.

Keywords-software clones; empirical studies; clone report;

bug localization; software maintenance

I. INTRODUCTION

Recent estimates indicate that software maintenance
costs account for as much as 70 to 90% of total software cost
[4, 9] Techniques and tools that can reduce the effort spent
by developers on these activities are required to reduce
maintenance costs. One characteristic of a software system
that can adversely affect its comprehensibility is the presence
of similar or identical segments of code, or code clones.

A common approach employed by developers while
coding is to identify sections of code that can be copied,
pasted and possibly edited, rather than writing completely
new code [14]. Other developer activities lead to the
introduction of code clones, including: language construct
recurrence, pattern or paradigm adherence, and framework
reuse. On average, five to twenty percent of a software
system is cloned code [20]. For example, CCFinder, a
popular clone detection tool [12] determined that almost
30% JDK v.1.3.0 is cloned code. CP-Miner, a tool for
finding copy-paste bugs, found that over 22% of the code in
version 2.6.6 of the Linux kernel was cloned [16]. In
addition, one study reported over 59% cloned code in a
COBOL payroll application [8].

There are conflicting views on whether code clones are
problematic. Earlier work by Fowler et al. classified code
clones as a ‘bad smell’ that would increase the difficulty of

maintenance [10]. However, more recent work indicates that
code clones may not be as harmful as originally believed [14,
19]. In fact, code clones may actually improve productivity
[13]. Rahman et al. found little empirical evidence that
clones negatively affect software maintainability but did find
that cloned code may be less fault prone than non-cloned
code [17]. There is agreement that a developer’s awareness
of code clones is critical for performing correct (and
complete) software maintenance.

Researchers have recently developed both techniques for
clone detection and tools to implement those techniques.
However, additional data about the clones in the system are
needed to assist developers who must make decisions
regarding these clones during software maintenance tasks.
For example, when a change is to be made to one clone
fragment in a clone group (collection of clone fragments), a
developer must determine whether the change should be
made to all other clone fragments in that clone group. Such
decisions are critical, because if the developer makes an
incorrect decision, then a bug could be introduced. A
developer's analysis and decision-making process regarding
code clones can be complicated further by the sheer volume
of clones that are present in a large software system.

Due to the lack of empirical studies in the literature, it
appears to be assumed by the creators of the clone detection
approaches that if a developer is provided with the report
from a code clone detection tool, they will know how to use
it to perform various software engineering tasks. In searching
the literature, we were unable to find any human-based
empirical studies that verify the usefulness of the information
provided in the code clone reports that are output from the
tools. Therefore, the main motivation behind this study was
to observe how developers use the output from a code clone
tool to perform the maintenance task of bug localization,
without being given specific instructions on how to use the
tool output. Often, in an industrial setting, developers use
new tools without the benefit of detailed training. So, our
experimental setup mirrors that reality.

To focus the study, we developed the following research
questions:

 RQ 1: How do developers use the information from a
clone report produced by a code clone detection tool
while performing a bug localization task?

o RQ 1.1: Is the information in a clone report
useful for finding defects?

o RQ 1.2: Does the information from the clone
report lead developers to identify false-
positives?

 RQ 2: Do novice and professional developers use the
information from the clone report differently? If so,
how?

Our long term goal is to develop methods to improve the
usefulness of code clone reports (and other clone-related
artifacts). The results of this study and other follow-on
studies will help guide that work.

The remainder of the paper is organized as follows:
Section 2 reviews related work. Section 3 describes the
study. Section 4 contains a detailed data analysis. Section 5
describes the threats to validity. Section 6 concludes the
paper and describes plans for future work.

II. RELATED WORK

There has been a considerable amount of research
conducted on clone detection approaches and tools. For
example, Bellon et al. [2] use eight open source software
systems to quantitatively compare and evaluate six clone
detectors, including CCFinder, which we used in our study.
Roy et al. [18] qualitatively compare and evaluate over 40
clone detection techniques and tools using a unified
conceptual framework.

Other recent empirical studies, such as those by
Bettenburg et al. [3] and Thummalapenta et al. [19]
investigate the genealogical traits of code clones. That is,
these studies track clone groups across multiple revisions of
software projects to draw conclusions about developers'
knowledge of clones. For example, Bettenburg et al. reported
that the majority of long-lived clones in Apache Mina and
jEdit are instances of the replicate and specialize pattern, in
which code is cloned and then customized to implement a
new feature. Moreover, the authors found that errors to
replicate-and-specialize clones were not introduced at a high
rate by inconsistent changes. Based on this finding, the
authors concluded that developers of both Mina and jEdit are
aware of those long-lived clones and are able to effectively
manage their independent evolution.

On the other hand, there is a dearth of human-based
empirical studies that focus on understanding how software
developers use clone detection and analysis tools to maintain
cloned code. To our knowledge, only two such studies have
been published. [7, 14].

de Wit et al. [7] developed CLONEBOARD, an Eclipse
plug-in that tracks changes to clones to help prevent
inconsistently modified clones. To evaluate
CLONEBOARD, de Wit et al. conducted a user study of
seven software engineers performing a programming
assignment. The study results indicated that the developers
saw some value in CLONEBOARD. However in practice
CLONEBOARD failed to meet the expectations of the users
when fixing clone related bugs. The users believed that it
would need a better user interface to be more useful.

Kim et al. [14] performed an ethnographic study of copy-
and-paste programming practices. They observed nine
developers for about 10 hours of Java/C++/Jython
programming. The researchers manually logged edit

operations (copy, cut, paste, delete, undo, and redo). As these
operations were performed, the developers indicated their
intention for copy-and-pasting. Kim et al. also used an
Eclipse plug-in to automatically track 50 hours of Java
source code edits by five other developers. The researchers
used this information to infer the programmers’ intentions
for copying-and-pasting. They then interviewed each
programmer twice to confirm the accuracy of the inferences.
The study conclusion was that developers typically wait until
after several copy-and-paste operations before restructuring
the code.

Balint et al. [1] performed a retrospective study in which
they created an author-centric view of clone evolution in
Apache Ant, ArgoUML, and Ptolemy II. Though the authors
did not directly observe developers, they mined software
repository data to track the activities of project developers
over time. By analyzing visualizations of the clone evolution
data, Balint et al. identified five cloning activity patterns: (1)
consistent line/block cloning with unique author, (2) creation
of clones by multiple authors using consistent block cloning,
(3) consistent line/block cloning with multiple authors, (4)
inconsistent line cloning fixed by same author, and (5)
inconsistent line cloning fixed by different authors. The
results indicated that the rate of detection of inconsistent
changes correlated with the number of developers. Thus, the
specific developers involved should be considered when
analyzing code clones.

Other researchers have studied the potential impacts that
code clones can have on the software development process.
Krinke et al.’s [15] study of open source software indicated
that half of the changes to code clone groups are inconsistent
with each other. A study by Cordy et al. [6] reports that
removing clones actually increases risk in large software
systems. Similarly, Kapser et al. [13] claim that clones have
a positive impact on maintainability. They describe several
patterns of cloning and discuss their benefits for the long
term evolution of software. Instead of eradicating repeated
code there should be effort towards developing tools to
support long term maintenance of clones. Our study takes a
step in this direction by providing insight into how
developers use code clone information.

We presented a preliminary version of this work at the
PLATEAU 2010 workshop [5].

III. STUDY OVERVIEW

The goal of this study was to understand how developers
use the information generated by a code clone detection tool
to support a standard maintenance. task. To make the study
tractable, the maintenance task was bug localization (i.e.,
identifying the source code elements that must be modified
to correct a bug) rather than bug repair. This choice of tasks
is logical because clone information is more useful in
identifying cloned code that must change than it is in actually
changing the code. Section III.A describes the application
used in the study. Section III.B describes the clone
information used in the study. Then, Section III.C gives a
detailed description of the study design. Section III.D
explains the data that was collected during the study. Finally,

Section III.E describes the pilot study conducted prior to
performing the main study.

A. Software System: Apache Ant 1.6.5

Because the difficulty of the bug localization task is highly

dependent upon the software system being examined, we

determined that the software used in this study should:

 be large enough to make bug identification a

nontrivial task;

 be small enough that participants could perform the

bug localization task in one hour; and

 contain both a cloned bug and non-cloned bug to

control for the placebo effect.
To meet these requirements we chose Apache Ant version

1.6.5. Apache Ant automates the software build process,
similar to Make. Version 1.6.5 contained two distinct bugs
that met the requirements. Below is a detailed description of
the two bugs.

We retrieved the two bug reports from the Apache
Bugzilla repository. The bug IDs are 38175

1
 (affected

Copy.doFileOperations and Copy.doResourceOperations)
and 38082

2
 (affected Scp.parseUri). Both bugs were reported

in version 1.6.5. However, the first bug was actually
introduced into the trunk after the release of version 1.6.5.
Thus, revision 367315 of the trunk of the Ant Subversion
repository was used in this study. This revision was the last
in which both bugs existed. In particular, the bugs in
Copy.doFileOperations, Copy.doResourceOperations, and
Scp.parseUri were repaired in revisions 367316, 367342,
and 417590, respectively. The Bugzilla repository only
provides the reproduction rules for the Windows platform.
However, because the participants in our study worked on a
Unix platform, we also provided the reproduction rules for
the Unix platform.

Bug 1: The failonerror=”no” doesn’t work for locked file.
When we try to perform a recursive copy in a directory that
contains a locked file, the copy fails before the end of the
whole copy, even if I have the attribute failonerror set to
“no”.

Reproduction: If Mozilla Thunderbird is open, there is a
locked file in the profile directory (parent.lock). Fig. 1 shows
the reproduction of Bug 1.

Bug 2: SCP Task password with special characters. The
scp task does not handle password with special characters
like “@”. Fig. 2 shows the reproduction of Bug 2.

Bug 1 appeared in two clone fragments within the same
clone group (and within different methods of the same class).
We use the term defect to refer to an instance of a bug. In
this case, there were two defects related to Bug 1. Bug 2
appeared in only one code fragment (i.e., no clones). There
was only one defect related to Bug 2. Using the defect

1
 https://issues.apache.org/bugzilla/show_bug.cgi?id=38175

2
 https://issues.apache.org/bugzilla/show_bug.cgi?id=38082

identification form in Fig. 6, each participant had the
opportunity to identify three defects (both instances of bug 1
and one instance of bug 2). The two bugs were actual, user-
reported bugs available in the Apache Ant Bugzilla
repository. We used solutions posted in Bugzilla to verify the
correctness of the participants’ solutions. Because the
solutions were available on the web, the participants were
not allowed access to the internet during the study.

Figure 1. Bug 1

B. The clone report

We used CCFinder version 10.2.7 to detect the clones.
CCFinder records clone pairs, to which it assigns unique
identifiers, in a plain text file. In addition, for each cloned
code fragment, the token range is recorded in a collection of
plain text files (one file for each input file). CCFinder
provides an industrial-strength GUI to analyze and visualize
the detected clones. However, to obviate the need for
training the participants to use this complex GUI, we post-
processed the plain text files and provided a simplified
report, described below. The post-processing included
merging related clone pairs to form clone groups and
converting the token ranges to literal source code fragments.

Code Clone Report Format: The forms of clone group
entries and source code are shown in Fig. 3. The format was
as follows: clone group entries (separated by blank lines), a
horizontal rule (60 dashes), and source code entries
(separated by two horizontal rules (40 dashes).

Figure 2. Bug 2

Unix:

<copy failonerror="no" todir="test">

<fileset dir =

 "/home/ubuntu/.thunderbird">

 <include name="**/*" />

</fileset>

</copy>

Windows:

<copy failonerror="no" todir="test">

<fileset dir="C:\Documents and

 Settings\User\Application

 Data\Thunderbird\Profiles">

 <include name="**/*" />

</fileset>

</copy>

<scp todir =

”user:p@ssword@cs.ua.edu:/home/ubuntu/

”>

 <fileset dir=”src_dir” />

</scp>

C. Study Design

This section describes the participants, the training and
the task performed.

Participants: 43 participants were drawn from graduate
software courses, 13 from the University of Alabama (UA)
and 30 from the University of Alabama in Huntsville (UAH).
Some participants were novices (i.e. they had little or no
industrial experience) while others had industrial experience.

The Training: In both courses, the course instructors gave
the participants a brief lecture about code clones and their
impact on software development and maintenance. These
lectures helped the participants become familiar with the
terms code clone and code clone report. The lectures did not
give the participants specific guidance on how to use the
clone information to perform various software engineering
tasks. This information was not included in the training
because the goal of the study was to test the efficacy of the
clone report for the average developer, not one with detailed
knowledge about code clones and the use of code clone
information.

After the training, the participants received an overview

document containing the following information needed to

complete the experimental tasks.

1. A brief introduction to code clones, an overview of

the Apache Ant system and definitions of important

terms;

2. The directory structure of Apache Ant 1.6.5; and

3. Information on how to reproduce the two bugs.

The participants also received the Ant documentation, the

j2dsk-1.4.2 documentation, and the clone report.

The Task: Based on the information provided during
training, the participants were instructed to identify the
specific location (file, method and line number) that should
be modified to correct each bug. They were told that they
should identify all portions of the code that must be modified
to correct the bug. The participants were not expected to
actually make the repair. All tasks were conducted in a Linux
environment. The participants were allowed to use the
standard Linux utilities “find” and “grep” within the terminal
or were allowed to use the search dialog box provided by
Ubuntu. All analysis was performed statically (i.e., the
participants could not compile or execute the code). We used
this approach to avoid introducing any bias due to the
participants’ familiarity with the development environment
(e.g. the compiler or the execution environment). We wanted
to ensure we focused the participants on the clone
information rather than the functionalities of the
development tools. A similar approach is used in the study
by Fry et al. [11]. Once a participant identified a bug, he
recorded his findings on the defect identification sheet
described in the next section.

D. Data Collection

We collected two types of data: data from naturalistic
observation and self-reported data.

Naturalistic Observation During the bug localization tasks,
two of the authors stood behind the participants and watched
over their shoulders (i.e., as passive observers). In the study

Clone Group: UID Clone Group: 2285

 FILE0: Lines (X0-X1) Copy.java: Lines (881-891)

 FILE1: Lines (y0-y1) Copy.java: Lines (795-804)

--------------------------- ---------------------------

--------------------------- ---------------------------

Clone Group ID: UID Clone Group ID: 2285

File: /path/to/File0 File: …/src/main/org/apache/tools/ant/taskdefs/Copy.java

Line: X0-X1 Line: 881-891

<<LINES X0-X1 of FILE0>> catch(IOException ioe) {

 String msg = “Failed to copy” + fromResource

 …

 }

File: /path/to/FILE1 File: …/src/main.org/apache/tools/ant/taskdefs/Copy.java

<<LINES Y0-Y1 of FILE1>> Line: 795-804

 Catch(IOException ioe}

 String msg=”Failed to copy” + fromFile + “to” + toFile

 …

 }

--------------------------- ---------------------------

--------------------------- ---------------------------

(a) Clone Report Template (b) Clone Report Excerpt

Figure 3. Format of the Clone Report

by Kim et al. [14] (which was mentioned earlier), the
researchers began by using naturalistic observation. They
later shifted to automated data collection when they noticed
that the observers were creating an unnecessary disturbance
to the participants. In our case, the observers did not interfere
with or disturb the activities of the participants. In addition,
the observers were able to answer the participants’ questions
about the conduct of the study. We considered adapting an
automated data collection process similar to Kim et al., but
because this approach has its own share of shortcomings, we
chose not to use it.

Fig. 4 illustrates the experimental setting. The
participants performed the study in groups of four. To
observe all four participants simultaneously, the two
observers had to observe multiple participants as follows.
Each observer was responsible for two participants at a time.
Every two minutes, they alternated between observing each
of their two participants. After 30 minutes (one-half of the
experimental session), the observers switched positions and
observed the other two participants for the next 30 minutes.

For example, referring to Fig. 4, Observer 1 began by
observing Participant 1 for two minutes while Observer 2
observed Participant 3. After two minutes, Observer 1
observed Participant 2, while Observer 2 observed
Participant 4. After two minutes, Observer 1 and 2 returned
to observing Participants 1 and 3, respectively. This pattern
continued for 30 minutes. At that point, Observer 1 began
observing Participants 3 and 4 while Observer 2 began
observing Participants 1 and 2, switching every two minutes
just as before.

The motivation behind this somewhat complicated data
collection method was to help ensure the accuracy and
consistency of data collected. The observation interval was
set at two minutes so that it was long enough for the
observers to observe what the participants were doing while
being short enough for making as many iterations as possible
to provide good insight into each participant’s process. Also,
by having the observers switch places after 30 minutes, we
helped ensure that data was gathered consistently regardless

of the observer. The pilot study, discussed later in this
section, proved to be useful in finalizing the length of the
observation interval.

In sessions with less than four participants, the observers
observed the participants for two minutes, then did not
observe them for two minutes to ensure that the same data
was collected throughout the study. For example, if there
were only 3 participants, Observer 2 would observe
Participant 3 for two minutes and then observe no one for
two minutes.

The observers maintained a ‘fly on the wall’ perspective
during the experiment session unless the participants
specifically asked questions. The questions asked by the
participants included: “What exactly are we supposed to do
here?”; “How do I read the clone report?”; “Can I execute
the code?”; “Can I access the internet?”; and “I am not able
to find the bug, what should I do?”. The observers kept their
answers as brief as possible and did not answer certain types
of questions that would have unfairly aided a participant in
completing the task. In this way the observers strove to not
introduce any type of bias into the study.

During the naturalistic observation, the observers
recorded the following information:

 the resources used (i.e. the code, the code clone

report, the report form or the overview sheet);

 actions performed; and

 subjective notes about the participant’s actions.
To record this information, the observers used the

Observer’s Data Recording Form shown in Fig. 5.

Self-Reported Data Participants self-reported data on two
data collection forms: the defect identification form and the
post-observation questionnaire. The participants used the
defect identification form (Fig. 6) to report the identified
defects. The form included places to record a time stamp,
defect location, description of defect, steps taken to locate
the defect and how they would fix the defect. Even though
only bug one had two associated defects (the original and the
clone), so as not to bias the results, the defect form provided

Figure 4. Study Design

space to report two defects for each bug. So the form
contained four spaces for defect reports. Such a form allowed
for the possibility of three correct defects and one false
positive.. The information from this form helped us calculate
the number of defects detected, the number of false positives,
if any, and the time required to find the defects.

On the post-observation questionnaire the participants
reported their level of experience with software
development, bug localization, code clones and the
CCFinder tool. The participants also could give their opinion
of the usefulness of the clone report for bug localization.

E. Pilot Study

As good experimental practice, we conducted a pilot
study to validate and debug the study design. Four graduate
students, who were not going to participate in the main
study, participated in the pilot study. The pilot study took
place in a similar environment as the main study. The
participants performed the same task on the same system.
The results of the pilot study motivated some changes to the
originally planned study design.

First, during the pilot study, the observers used a one
minute observation interval. We determined that one minute
was not long enough to observe and record the necessary
information. As a result, we used two minute intervals in the
main study. This two minute interval ensured that the
observer could look closely at the work of the participants
and record more accurate data.

Second, the pilot study participants suggested some other
minor study design changes. These changes were mostly
concerned with the overview document and the defect
identification sheet to arrive at the versions used in the main
study. For example, we rearranged the sections of the
overview document and rephrased some questions on the
defect identification sheet.

IV. DATA ANALYSIS

This section is organized around the research questions
presented in Section 1. We use an alpha value of 0.05 for
judging statistical significance in all tests. Before presenting
the analyses, we first give an overview of the data.

A. Overview of the Data

Each participant can be characterized using two variables.

The first variable, experience came from the post-

observation questionnaire. The second variable, clone report

usage strategy, came from the observational data.

For the experience variable, on the post-observation
questionnaire each participant used a five-point Likert scale
to report his level of experience. Participants who had either
no experience or only classroom experience were
characterized as novices (23 participants). Those who had
industrial experience were characterized as professionals (20
participants).

For the clone report usage strategy variable the observers
noticed that each participant seemed to employ one of two
strategies when using the clone report. The first strategy,
called after, was to use the code clone information to search
for cloned code only after first identifying a defect. The
second strategy, called before, was to use the code clone
information before identifying a defect. Because many
participants were unfamiliar with code clone information,
during the first 10 minutes a participant was allowed to
familiarize himself with the clone report and still be
characterized as using the after strategy.

Fig. 7 illustrates each participant based on the number of
defects found and whether he or she reported the false
positive. The vertical axis represents the participant’s clone
report usage strategy (before or after) and the horizontal
axis represents the participant’s level of experience. These
two axes partition the space into four quadrants based on
these two variables. Each of the concentric circles contains
data points representing participants who found a specific
number of defects. Within each circle, the distance from the
center point is meaningless. For example, the participants
represented by the two data points lying in the lower right
quadrant of the outermost circle each found three defects.
One of those participants also reported the false positive. The
largest group of participants was those who found zero
defects.

Prior to this study, most participants had little experience
identifying defects in large software systems. The data
showed that participants, who had some software
development experience, as reported in the post observation
questionnaire, were more confident and found more defects
than those without such experience. The few participants
who found all three defects had all worked on multiple
industrial software projects. Another observation from this
data is that in spite of having a detailed clone report; several
participants were able to locate the initial defects but did not
find the second defect for Bug 1 (i.e. the clone)

Figure 5. Observers’ data recording form

Figure 6. Defect Identification Form

B. RQ 1.1 –Is the information in a clone report useful for

finding defects?

On the post observation questionnaire the participants
used a 5-point Likert scale (1-not effective at all to 5-highly
effective) to report the efficacy of the clone report for the
bug localization task. The scatterplot in Fig. 8 shows the
relationship between this efficacy value and the number of
defects found by each participant. Because neither variable is
normally distributed (based on the Shapiro-Wilk test) we
conducted a conducted a Kendall’s tau_b correlation. The
correlation was .196 and was not significant (p=.13).

We also split the participants into two groups: those that
had a positive impression of the clone report (4 and 5 on the
scale) and those that had a negative impression (3 or lower).

We then performed a t-test to compare the average number
of defects found by the participants in each group. The
participants who had a positive impression of the clone
report were more effective than those with a neutral or
negative impression of the clone report (1.45 defects vs. .78
defects on average). This difference was not significant (t41 =
1.946; p = .059).

We suspected that the analysis may be skewed by the
large number of participants who found no defects.
Therefore, to further analyze these results, the 19 participants
who found no defects were excluded and the data
reanalyzed. Fig. 9 shows a scatter plot of the data. In this
case the Kendall’s tau_b coefficient increased to .468 and
was significant (p=.009). In addition, the t-test showed that

Figure 8. Positive relation between number of clones found and the

clone efficacy

Figure 9. Positive relation between number of clones found and the

clone efficacy excluding the data points for which number of bugs
found was zero.

Figure 7. Overview of Data

those who found the clone report useful were significantly
more effective (2.29 defects vs. 1.47 defects) (t22 = 2.739, p
= .012) than those who did not.

The data does not allow us to draw any conclusions

about causality. We are not sure whether 1) finding the

clone report useful caused the increase in defects found, 2)

finding more defects resulted in a more positive view of the

clone report, or 3) some other variable influenced the

results. Further study is required.
As a second analysis to address this question, we

investigated whether the clone report usage strategy
impacted effectiveness. If a participant fully understood how
to use the clone report, he would realize that the clone report
was only useful after identifying a defect to help search for
clones of the problematic code. Because the clone report is
merely a list of cloned code, it is not useful for identifying
the original defect. Fig. 10 and 11 illustrate the overall trend
that participants who used the clone report after finding a
defect tended to identify more real defects and fewer false
positives than those who used it before finding a defect. The
qualitative observations indicated that many of the thirty-five
participants who used the clone information before finding a
defect appeared to be attempting to use the clone information
to locate the initial defects. This observation suggests that
developers need at least a small amount of training on how to
use clone information in order to use it effectively.

Following on this discussion of clone report usage
strategy, we conducted two analyses. First, we tested
whether either strategy made the participants more effective.
Those who used the clone report after finding a defect found
an average of 1.62 defects compared with 0.8 defects (out of
a possible 3) for those who used the clone information
before finding a defect. An independent samples t-test
showed that this difference was significant (t41 = -2.146;
p=.038). Second, we tested whether the participants who
used the clone information after finding a defect were more
effective in finding the cloned defect related to Bug 1.
Twenty-five percent of the participants who used the clone

information after first finding a defect did find the cloned
defect whereas only 5.71% of the participants who used the
clone information before finding a defect were successful in
finding the cloned defect. However, this difference was not
significant (t41 = -1.713; p = .094).

Additionally, we computed the percentage of time each
participant spent using each of the three resources provided
to them (i.e., the clone report, the code base and the
documentation). During each observation, the observer noted
which resource(s) the participant used. If a participant used
more than one resource, the time was divided accordingly.
For example if during an observation a participant used only
the clone report, 100% of the time was assigned to the clone
report. If a participant used both the clone report and the
documentation then each resource was assigned 50% of the
time. Similarly, if the participant used all three resources,
each resource was assigned 33% of the time. We made an
assumption that the distribution of time between the
resources would be the same for the time that each
participant was not being observed.

Based on the number of defects found, we divided the
sample into three groups: those who found no defects, those
who found at least one defect, but not the cloned defect, and
those who found all three defects, including the cloned
defect. Table 1 shows the average percentage of time the
participants from each group used the resources. The
participants who found no defects used the clone information
the most, followed by those who actually found the cloned
defect. It is not surprising that the participants who found the
cloned defect used the clone information more than those
who did not find it. It is surprising to see that the participants
who found no defects used the clone report more than
anyone else.

A chi-square test indicated that the distributions among
the three groups was significantly different (X

2
4 = 13.727; p

= .02). At this point we cannot conclusively explain this
result. It seems to indicate that those who found no defects
were unsure of how to use the clone report and therefore
were using it incorrectly. Logically, if a participant did not

Figure 10. Clone report usage

Figure 11. Correct vs. Incorrect Use of Clone Report

find any defects, they should not have had little use for the
clone information, as it is most useful in finding cloned
defects

C. RQ 1.2 – Does the information from the clone report

lead developers to identify false-positives?

This research question evaluated whether the clone report
misleads a developer, resulting in the reporting of false
positives while looking for the clone of a defect. None of the
eight participants who used the before strategy reported a
false positive. All five participants who did report a false
positive used the after strategy. While this result was not
significant (likely due to small number of participants who
used the before strategy), the fact that no one who used the
before process reported a false positive suggests that there
may be an important phenomenon here.

D. RQ 2 – Novice vs. Professionals

To determine the effects of the participants’ previous
programming experience, we compared the effectiveness of
novices and professionals. On average, the professionals
identified more defects than the novices (1.53 vs. .43
respectively). This difference was significant (t41 = -4.222; p
< .001). In addition, all four participants who correctly
identified the cloned defect were professionals.

The professionals also tended to employ the after
strategy of using the clone report more often than the novices
did. Table 2 is the contingency table showing the
distributions of these two variables. Even though a chi-
square test did not show a significant result (X

2
 = 1.010; p=

.315), there is a positive trend.

V. THREATS TO VALIDITY

Construct Validity: We made the assumption that using
the after strategy would be more effective based on theory
and on participant observation. It is possible that this
assumption is incorrect or that the method we used to
partition the participants into the before group and the after
group was biased. Either of these problems could introduce a
threat to construct validity.

Internal Validity: There was potentially a subject
expectancy threat that could have arisen from the fact that we
gave the participants a clone report. The participants could
have assumed that the clone report was supposed to be used
for the bug localization task without fully understanding how
to properly use it. We chose a system written in Java because
we assumed most students would be familiar with that

language. If someone was not familiar with Java, it could
bias the results. Ideally the participants should have had an
option to select the programming language with which they
were most familiar. The participants performed the task in a
Linux environment which could be a validity threat if they
were not familiar with Linux and the search features it
provides. Finally, to prevent a threat to validity of the
participants being able to locate the solutions on the web, we
did not provide internet access. Similarly, the participants
were not allowed to execute the code. This approach reduced

a threat to internal validity that the results may be caused by
participants’ familiarity with the development and execution
tools.. External Validity: The participant population
consisted of both novices and professionals, reducing a threat
to external validity. Conversely, the task was performed in
isolation rather than as part of a complete maintenance
process, which may introduce a threat to external validity.
The task was a realistic task (i.e. bug localization), but it was
not complete (i.e. the participants did not fix the bug). Also,
because we increased internal validity by preventing the
participants from compiling or executing the code, the way a
developer would typically work, there is a threat to external
validity. Finally, the participants were not trained in using
the clone report. Although this lack of training could
introduce a threat to validity, one of our study goals was to
see how people would use the report without training.

VI. CONCLUSION AND FUTURE WORK

There have been few human-based empirical studies focused
on code clones and the use of information from clone
reports. This exploratory study provides insights into how
developers use the information from a clone report. Some
concrete conclusions from the study are:

 Initial evidence shows that, without training, most
participants employed the before strategy of clone

TABLE I. PERCENTAGE USE OF RESOURCES

 Means of percentage use of resources

 Clone Report Code Base Documentation

Defects found by

the participants

No defects found (19) 27.95% 54.16% 17.89%

One or two defects found (20) 14.5% 74.5% 10.7%

All three defects found (4) 22.75% 71% 6.25%

TABLE II. NOVICE VS. PROFESSIONALS

 Use of clone report

Before After Total

Novice 20 3 23

Professional 15 5 20

Total 35 8 43

report usage, which appears to be less useful than the
after strategy. Some researchers argue that clone
detection tools are needed to support the maintenance
process because those tasks are often assigned to entry
level developers. However, if those developers are not
able to effectively use the clone report, such clone
detection tools are of little use to them.

 There is a relationship between effectiveness and
employing the after strategy of clone report use,
although we have yet to establish a causal relationship.

 In a large software system the clone report might not
help developers locate the initial defect, but it will help
them locate clones of that defect.

 Use of the clone report may also reduce reporting of
false positives.

As this was an exploratory study, there are a number of
replications that we plan to conduct. Because the lack of
training on how to use clone information was a threat to
validity, a replication will be done to control for clone
detection training (i.e. by training half of the participants
how to use the clone information and not training the other
half). Another replication will be performed in an
environment where the participants could execute the code
and repair the defects to see whether the results differ.
Another replication will look at defects involving more than
two instances of cloned code. For example, assume there are
eight clones, but only three cause defects.

We will also investigate the false positives in more detail.
We will look at the effects of the clone report on false
positive identifications For example, if someone incorrectly
identifies a defect and then, using the clone report, do they
identify additional false positives?

Finally, this study serves as a starting point for a series of
studies in which we will evaluate the effectiveness of various
types of clone detection tools as well as various methods for
presenting clone information to developers.

VII. ACKNOWLEDGEMENTS

We thank Dr. Letha Etzkorn for allowing us to run the
study in her class at UAH. We also thank the participants for
their time to complete this study. We acknowledge support
from NSF grants CCF-0915559 and CCF-0851824.

REFERENCES

[1] Balint, M., Girba, T. and Marinescu, R. "How developers

copy." In Proceedings of the 14th IEEE International

Conference on Program Comprehension (ICPC). 2006. pp. 56-

68.

[2] Bellon, S., Koschke, R., Antoniol, G., Krinke, J. and Merlo, E.,

"Comparison and Evaluation of Clone Detection Tools," IEEE

Transactions on Software Engineering, 33(9): 577-591. 2007.

[3] Bettenburg, N., Weyi, S., Ibrahim, W., Adams, B., Ying, Z. and

Hassan, A. E. "An empirical study on inconsistent changes to

code clones at release level." In Proceedings of the Reverse

Engineering, 2009. WCRE '09. 16th Working Conference on.

2009. pp. 85-94.

[4] Boehm, B. and Basili, V. R., "Software Defect Reduction Top

10 List," IEEE Computer, 34(1): 135-137. 2001.

[5] Chatterji, D., Massengill, B., Oslin, J., Carver, J. and Kraft, N.

"Measuring the efficacy of code clone information: An

empirical study." In Proceedings of the Evaluation and

Usability of Programming Languages and Tools (PLATEAU)

[Held during SPLASH]. Oct. 18, 2010.

[6] Cordy, J. R., Dean, T. R. and Synytskyy, N. "Practical

language-independent detection of near-miss clones." In

Proceedings of the Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON). 2004.

[7] de Wit, M., Zaidman, A. and van Deursen, A. "Managing code

clones using dynamic change tracking and resolution." In

Proceedings of the Software Maintenance, 2009. ICSM 2009.

IEEE International Conference on. 2009. pp. 169-178.

[8] Ducasse, S., Rieger, M. and Demeyer, S. "A language

independent approach for detecting duplicated code." In

Proceedings of the IEEE International Conference on Software

Maintenance (ICSM). 1999. pp. 109-118.

[9] Erlikh, L., "Leveraging Legacy System Dollars for E-

Business," IEEE IT Professional, 2(3): 17-23. 2000.

[10] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D.,

Refactoring: Improving the Design of Existing Code. ,1st ed.

Addison-Wesley, 1999.

[11] Fry, Z. P. and Weimer, W. "A human study of fault

localization accuracy." In Proceedings of the Software

Maintenance (ICSM), 2010 IEEE International Conference on.

2010. pp. 1-10.

[12] Kamiya, T., Kusumoto, S. and Inoue, K., "CCFinder: a

multilinguistic token-based code clone detection system for

large scale source code," IEEE Transactions on Software

Engineering, 28(7): 654-670. 2002.

[13] Kapser, C. and Godfrey, M. ""Cloning considered harmful"

considered harmful." In Proceedings of the 13th Working

Conference on Reverse Engineering (WCRE). 2006. pp. 19-28.

[14] Kim, M., Bergman, L., Lau, T. and Notkin, D. "An

ethnographic study of copy and paste programming practices in

OOPL." In Proceedings of the International Symposium on

Empirical Software Engineering (ISESE). 2004. pp. 83-92.

[15] Krinke, J. "A study of consistent and inconsistent changes to

code clones." In Proceedings of the 14th Working Conference

on Reverse Engineering (WCRE). 2007. pp. 170-178.

[16] Li, Z., Lu, S., Myagmar, S. and Zhou, Y., "CP-Miner: finding

copy-paste and related bugs in large-scale software code,"

IEEE Transactions on Software Engineering, 32(3): 176-192.

2006.

[17] Rahman, F., Bird, C. and Devanbu, P. "What is that smell?" In

Proceedings of the 7th Working Conference on Mining

Software Repositories (MSR). 2010.

[18] Roy, C. K., Cordy, J. R. and Koschke, R., "Comparison and

evaluation of code clone detection techniques and tools: A

qualitative approach," Science of Computer Programming,

74(7): 470-495. 5/1. 2009.

[19] Thummalapenta, S., Cerulo, L., Aversano, L. and Di Penta,

M., "An empirical study on the maintenance of source code

clones," Empirical Software Engineering, 15(1): 1-34. 2010.

[20] Uchida, S., Monden, A., Ohsugi, N., Kamiya, T., Matsumoto,

K. and Kudo, H., "Software Analysis by Code Clones in Open

Source Software," The Journal of Computer Information

Systems, XLV(3): 1-11. April. 2005.

