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Abstract 
 

Project managers can use the capture-recapture 

models to estimate the number of faults in a software 

artifact. The capture-recapture estimates are 

calculated using the number of unique faults and the 

number of times each fault is found. The accuracy of 

the estimates is affected by the number of inspectors 

and the number of faults. Our earlier research 

investigated the effect that the number of inspectors 

had on the accuracy of the estimates. In this paper, we 

investigate the effect of the number of faults on the 

performance of the estimates using real requirement 

artifacts. These artifacts have an unknown amount of 

naturally occurring faults. The results show that while 

the estimators generally underestimate, they improve 

as the number of faults increases. The results also 

show that the capture-recapture estimators can be 

used to make correct re-inspection decisions. 

 

1. Introduction 
 

Project managers and software developers manage 

the development process by monitoring the quality of 

the artifacts developed at each lifecycle stage. In the 

software engineering community, inspections are 

widely used to improve the quality of these artifacts, by 

enabling developers to detect faults early and avoid 

costly rework later [1]. In practice, however, the 

evidence suggests that the effectiveness of inspections 

varies widely [1, 2]. Furthermore, inspections only 

identify the presence of faults; they cannot certify the 

absence of faults or provide insight into how many 

remain post-inspection. 

Project managers need objective information to help 

them decide when enough faults have been found that 

they can safely stop the inspection process. During a 

real project, a reliable estimate of the number of faults 

can aid mangers in determining the need for additional 

inspections. Among the various approaches available 

for estimating the number of faults (e.g., fault density, 

subjective assessment, historical trends, capture-

recapture, and curve-fitting), capture-recapture is the 

most objective and appropriate method [2, 6]. 

Capture-recapture (CR) is a statistical method that 

was originally developed by biologists for estimating 

the size of wildlife populations. CR is used by 

repeatedly trapping (or capturing) a fixed number of 

animals, marking them, and releasing them back into 

the population. If the same animal is trapped during 

subsequent trapping occasions, it is said to have been 

recaptured. The size of the population is then estimated 

using: 1) the total number of unique animals captured 

across all trapping occasions, and 2) the number of 

animals that were re-captured. A higher percentage of 

recaptures indicates a smaller population [8, 14]. 

Using the same principle, the CR method can be 

used during the inspection process to estimate the 

number of faults in an artifact. During an inspection, 

each inspector finds (or captures) some faults. If the 

same fault is found by more than one inspector it has 

been re-captured [2, 4]. The total number of faults is 

then estimated in a similar manner as in wildlife 

research, with the animals replaced by faults and the 

trappings replaced by inspectors. The difference 

between the estimated total number of faults and the 

faults already found provides an estimate of how many 

remain. 

While biologists have comprehensively evaluated 

the CR method and have found it to be useful [8, 14], 

the use of the CR method for software inspections is 

relatively new [9]. The majority of the CR studies in 

software inspections have compared estimates 

produced by the CR models to the actual number of 

faults seeded into an artifact. Conversely, there has 

been little research on the effects of the two main 

factors used by the CR method for producing its 

estimates, namely the number of faults and the number 

of inspectors.    
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Table 2. CR estimators [3, 9, 15] 

 

Models Estimators 

 

 

Mo 

Unconditional Maximum Likelihood 

Estimator (Mo-UMLE) 

Conditional Maximum Likelihood Estimator 

(Mo-CMLE) 

Estimating Equations Estimator (Mo-EE) 

 

 

 

Mt 

Unconditional Maximum Likelihood 

Estimator (Mt-UMLE) 

Conditional Maximum Likelihood Estimator 

(Mt-CMLE) 

Estimating Equations Estimator (Mt-EE) 

 

Mh 

Jackknife Estimator (Mh-JK) 

Sample Coverage Estimator (Mh-SC) 

Estimating Equations (Mh-EE) 

 

Mth 

Sample Coverage Estimator (Mth-SC) 

Estimating Equations Estimator (Mth-EE) 
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Figure 1. CR data input matrix 

In an earlier paper, we analyzed the effect of the 

number of inspectors on the accuracy of the CR 

estimates by varying the number of inspectors while 

keeping the number of faults constant [12]. In this 

paper, we examine the effect of the other factor, the 

number of faults, on the accuracy of the CR estimates 

by varying the number of faults while keeping the 

number of inspectors constant. In addition, to better 

understand the impact of real vs. seeded faults, we used 

fault data from the inspection of real software artifacts 

that contain natural faults made during their 

development. We also analyzed the ability of the CR 

estimators to correctly predict the need for a re-

inspection using different numbers of faults found 

during an inspection. Finally, we discuss how these 

results can be useful for managing projects.  

Section 2 describes the basic principles behind the 

application of CR method to software inspections. 

Section 3 discusses the previous studies that provided a 

motivation for this study. Section 4 describes the study 

design. The analysis and results are reported in Section 

5. Section 6 discusses the threats to validity. Section 7 

discusses the relevance of the results to managers. 

Section 8 provides the conclusions and future work. 

 

2. Use of capture-recapture (CR) for defect 

estimation in software inspections 
 

The use of the CR method in biology makes certain 

assumptions that do not always hold for software 

inspections. The assumptions made by CR method in 

biology include: 1) a closed population (i.e. no animal 

can enter or leave), 2) an equal capture probability (i.e. 

all animals have an equal chance of being captured), 

and 3) marks are not lost (i.e. an animal that has been 

captured can be identified) [15]. When using the CR in 

software inspections, the closed population assumption 

is met (i.e., all inspectors review the same artifact and it 

is not modified) and the assumption that marks are not 

lost is met (i.e. it can be determined if two people 

report the same fault). However, because some faults 

are easier to find than others and because inspectors 

have different abilities, the equal capture probability 

assumption is not met [2, 9].  

To accommodate these different assumptions, four 

different CR models are built around the two sources of 

variation: Inspector Capability and Fault Detection 

Probability. Table 1 shows the four CR models along 

with their source(s) of variation. Each CR model in 

Table 1 has a set of estimators, which use different 

statistical approaches to produce the estimates. The 

estimators for each CR model used in this study are 

shown in Table 2. The mathematical details of 

estimators are beyond the scope of this paper but can 

be found in provided references. The input data used 

by all the CR estimators is organized as a matrix with 

rows that represent faults and columns that represent 

inspectors as shown in Figure 1. A matrix entry is 1 if 

the fault is found by the inspector and 0 otherwise.  

 

3. Empirical studies of capture-recapture 
 

Most CR research related to software inspections 

has focused on the basic theory and evaluation of CR 

models, with very little focus on the influencing factors 

involved [9]. The theory of CR for software inspections 

Table 1. Capture-recapture models [2, 10] 

 

Model Variation Source 

Mo 
Inspectors have same detection ability, and 

faults are equally likely of being detected. 

Mt 
Inspectors differ in fault detection abilities, 

but faults are equally detectable. 

Mh 
Inspectors are equally able, but all faults differ 

in their probability of being found. 

Mth 
Inspectors differ in fault detection ability, and 

faults differ in detection probability. 

 



was introduced by Eick, et al. in an early study on the 

use of CR models for software inspections by applying 

them to real defect data from AT&T. They applied the 

maximum likelihood estimator for the Mt model to 

estimate the number of faults remaining in requirement 

and design artifacts. The estimates produced by CR 

were similar to the subjective opinion of the inspectors. 

A major result from this study was the recommendation 

(based on the inspection results) that an artifact should 

be re-inspected if more than 20% of the total faults 

remain undetected [4, 5]. This recommendation has 

been used by all subsequent CR studies. 

Weil and Votta used the CR method in the same 

AT&T environment but added an additional model and 

estimator - the Jackknife (JK) estimator for the Mh 

model, and compared it with the Mt-MLE estimator. 

They found that both estimators produced inaccurate 

estimates when their assumptions were violated. They 

also proposed a grouping method to improve these 

estimators but found that it only improved the accuracy 

of the Mt-MLE estimator [15]. 

Briand, et al., reported the first evaluation study that 

included one or two estimators from each of the four 

CR models. Using requirement artifacts inspected by 

NASA professionals, this study investigated the effect 

that the number of reviewers and the number of faults 

had on the estimates. The major results from this study 

showed that the CR models generally underestimate 

and recommended Mh-JK as the best estimator. The 

results also showed that the accuracy of the estimators 

improves with more inspectors and faults, finding that a 

minimum of four inspectors and six faults are needed to 

achieve satisfactory estimates. There was no 

improvement in accuracy beyond four inspectors and 

six faults [2]. Our current work builds on these early 

findings. A limitation of Briand, et al.’s, study was that 

their recommendations were based on only six 

inspectors using artifacts seeded with fifteen to twenty 

faults. Therefore, this study builds on their efforts to do 

a more detailed investigation using artifacts with real 

fault data and bigger data set. Similarly, Emam, et al., 

evaluated the CR estimators using only two inspectors 

and found Mh to be the best CR model. They also 

advocated the use of subjective opinion with the CR 

estimates to make decisions on the need for re-

inspection during real development [6, 7].  

Therefore, most of the CR studies have utilized 

relatively small data sets. For that reason, we decided 

to investigate these issues with a larger data set. First, 

we conducted an empirical study of effect that the 

number of inspectors had on the accuracy of the CR 

estimators using data drawn from an inspection 

performed by 73 Microsoft professionals. The results 

from that study contradicted earlier findings that a 

minimum of four inspectors are needed to achieve 

satisfactory estimates and provided a detailed analysis 

that, depending on the estimator, a minimum of fifteen 

to forty inspectors are needed to obtain estimates 

within 5% to 20% of the actual fault count, taking into 

account both accuracy and precision [12].  

We performed another study with the goal of 

evaluating the ability of the CR estimators to estimate 

the fault count of artifacts containing faults made 

during their development (as opposed to seeded faults). 

Each artifact was inspected twice, which allowed the 

analysis of the CR estimator’s ability to decide about 

the need for re-inspection. The results showed that the 

estimates after second inspection were more accurate 

than the estimates after first inspection, and the CR 

estimates were accurate in determining the need of re-

inspection after each inspection cycle [13] 

The major results from the analysis of 10 years of 

research on the use of CR in software inspection as 

summed up by Petersson, et al. [9], and additional 

results from Walia, et al. [12, 13], are: a) CR models 

generally underestimate the fault count; b) Mh-JK is the 

most accurate but least precise estimator, c) the CR 

estimates improve with more input data, but there has 

not been much investigation of the effect of the number 

of faults on the performance of the CR models. 

 

4. Study design 
 

Previous empirical studies of CR in software 

inspections have evaluated the accuracy of the 

estimators. The common finding from these evaluation 

studies is that the CR models generally underestimate 

the true fault count, but accuracy improves with more 

input (i.e., more inspectors and more defects). The 

impact of these two factors on the estimation accuracy 

is expected to be positively correlated. However, this 

relation has not been extensively investigated. This 

study is a follow-up from our earlier study that 

investigated the impact on estimates when the number 

of inspectors is increased [12]. This study investigates 

the impact of the number of faults on the accuracy of 

CR estimates by keeping the number of inspectors 

constant and varying the number of faults.       

As mentioned earlier, the data used in most previous 

CR studies was drawn from the inspection of artifacts 

with seeded faults, rather than naturally occurring 

faults. Therefore, this study tries to understand the 

effect of the number of faults on the CR estimates using 

real artifacts developed by students in a senior-level 

capstone software engineering class (i.e. they were 

created to guide the later implementation of the system) 



with naturally occurring defects. The effect of the 

number of faults on the re-inspection decision is 

analyzed to gain additional insights into how the CR 

method can be used on other projects.  

 

4.1 Study goals 
 

 The major goal of this study is to understand the 

effect of the number of faults on the estimates produced 

by CR models. To achieve this goal, this study focuses 

on two important research questions: 

 

  Question 1: How does the performance of the CR 

estimators improve as a larger percentage of faults are 

discovered? 

  This question focuses on the general trends in the 

improvement of the performance of estimators as more 

faults are found. Answering this question provides 

details into what percentage of faults must be found 

before the CR models provide satisfactory estimates. 

Knowledge of these general trends and analyzing the 

improvement of the fault count estimates in their 

organizations will help project manager in determining 

the quality of an artifact under review. 

 

 Question 2: How is the re-inspection decision 

ability of the CR estimators affected by increasing the 

number of faults?      

  This question focuses on the estimate of the post-

inspection faults relative to the number of faults found 

during an inspection without knowing the true faults 

count. The ability of the CR estimators to accurately 

estimate the number of post-inspection faults is 

relevant for making re-inspection decisions. Answering 

this question provides project managers useful insights 

to make re-inspection decisions in real development. 

  

4.2 Data set 
 

The data was drawn from an earlier inspection study 

conducted at Mississippi State University (MSU). The 

goal of the original study was to investigate the impact 

of errors (mistakes) committed during the development 

of the requirements document [13]. Only the 

information relevant to CR analysis is provided here. 

 

4.2.1 Software artifacts and inspectors. Inspection 

data from two real requirement artifacts is used in this 

study. The artifacts were developed by sixteen senior-

level undergraduate students, majoring in either 

computer science or software engineering who were 

enrolled in the Senior Design Course at MSU during 

the Fall 2005 semester. The sixteen subjects were 

divided into two 8-person teams that developed the 

requirement document for their respective system as 

shown in Table 3. The course required the students to 

interact with real customers to elicit, and document 

requirements that they would later implement. Each 

artifact was then inspected by the same set of 

developers who created it [13].     

 

4.2.2 Software inspection process. First, all the 

subjects received training on a fault checklist. Then, 

each inspector inspected the artifact using that fault 

checklist and logged any faults identified. Then, the 

subjects were trained on how to abstract errors from 

faults, how to classify the errors, and how to use the 

errors to re-inspect the requirements document. Then, 

each inspector re-inspected the artifact using the errors. 

The same inspection process was followed by the 

subjects in each team, and the artifacts were not 

modified or corrected between inspections (i.e., the 

same artifact was re-inspected). The total number of 

faults found after two inspections in each artifact is 

shown in the last column in Table 3.   

 

4.3 Evaluation procedure 
 

To understand the impact that the number of faults 

has on the CR estimates, virtual inspections were 

created by keeping the team size constant at 8 and 

varying the number of faults from 1 to 55 for artifact A 

and from 1 to 105 for artifact B. The data from the 

original study was organized into an 8 (inspectors) X 

55 (defects) matrix for artifact A and an 8 (inspectors) 

X 105 (defects) matrix for artifact B.  

To create virtual inspections the appropriate number 

of rows (equal to the fault count being studied) were 

Table 3. Requirement artifacts and inspectors used in this study 

 
Artifact Name Description # of 

Pages 

# of 

Requirements 

Number of 

Inspectors 

Total 

Faults 

A Starkville 

theatre system 

Management of ticket sales and seat 

assignments for the community theatre 

27 14 8 55 

B Management of 

apartment and 

town properties 

Managing apartment and town property, 

assignment of tenants, rent collection, 

and locating property by potential renters 

 

42 

 

16 

 

8 

 

105 
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Figure 3. Median relative error values for 

different fault counts for artifact B 
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Figure 2. Median relative error values for 

different fault counts for artifact A 

selected randomly from the total pool of faults. For 

example, for artifact A, to create the virtual inspection 

for a fault count of twenty, twenty rows were randomly 

selected from the 8 X 55 matrix to produce a new 8 X 

20 matrix. Similarly, for artifact B, to create the virtual 

inspection for a fault count of thirty, thirty rows were 

randomly selected from the original 8 X 105 matrix 

producing a new 8 X 30 matrix. Using this approach, 

10 virtual inspections (i.e. 10 matrices) were created 

for each fault count. i.e., 10 virtual inspection teams are 

derived from 8 review teams. The automated tools 

CAPTURE [15] and CARE-2 [3], were then used to 

calculate the estimates.  

 

4.4 Evaluation criterion 
  

From the ten estimates produced for each artifact 

and each fault count, the median value is calculated. 

The performance of the CR estimators is then evaluated 

using three metrics: accuracy (bias), precision 

(variability), and failure rate. 

The accuracy (bias) is measured as the relative 

errors (R.E) of an estimate. It is calculated as: 

R.E = (Estimated number of defects – Actual number 

of defects) / (Actual number of defects) 

A R.E of zero means absolute accuracy (zero bias), 

a positive R.E means an overestimation, and a negative 

R.E means an underestimation. The accuracy of the CR 

estimator is measured by calculating the median 

relative error for each fault count. According to Eick, et 

al. and Briand, et al., the accuracy of an estimate is 

considered satisfactory when the R.E is within 20% of 

the actual value [2, 4, 12, 13]. 

The precision of an estimator is measured by 

calculating the variability of the R.E. estimates for each 

fault count. R.E variability around the central tendency 

i.e. (median value) is measured using the inter-quartile 

range of the 25
th

 percentile to 75
th

 percentile. 

The failure rate of an estimator is defined as the 

number of times an estimator fails to produce any 

result. Because each estimator makes different 

assumptions about the data and they all operate on the 

same data matrix, some estimators can fail if the data 

fails to meet some of its basic assumptions.  

  

5. Analysis and results 
 

This section reports the major results relative to the 

two research questions defined in Section 4.1.  

 

5.1 Effect of fault count on CR estimates 
 

Figures 2 and 3 show the median R.E. for each CR 

estimator for all fault counts (each line connects the 

estimates from the same estimator) for artifact A and 

artifact B respectively. To calculate the RE values, the 

actual number of faults is assumed to be the total 

number of faults found after two inspections (i.e., 55 

faults for artifact A and 105 faults for artifact B). These 

figures show that: 

a) The estimators failed to produce an estimate when 

the fault count was less than five. 

b) The estimators severely underestimate when the 

fault count is small,   

c) The accuracy of estimators improve with a higher 

fault count, and 

d) Some estimators improve faster (i.e., obtain 

accurate results with fewer faults) than other 

estimators. 

To compare, the relative performances of the 

estimators with respect to fault count, we need to 

determine the cut-off points (minimum fault count) 

required to obtain an estimate that falls within 20% of 

the actual value. The cut-off point is one larger than the 

largest number of faults for which the median estimate 

falls within 20% (i.e., from that point forward, the R.E. 

decreases as the fault count increases). For example, 

for artifact A, for MO-EE estimator, from 37 to 55 

faults the median estimate is always within 20% of the 

actual value (i.e., 20% of 55 = 44 faults).  
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Figure 4. Variability in the estimates for 

different fault counts for artifact B 

Table 4. Percentage of faults required for 

different levels of estimation accuracy 

 

Artifact A Estimators Artifact B 
-10% -20% -20% -10% 

76% 67% Mo-CMLE 68% 73% 

76% 67% Mo-UMLE 69% 77% 

78% 66% Mo-EE 69% 74% 

76% 66% Mt-CMLE 69% 74% 

80% 67% Mt-UMLE 68% 78% 

80% 66% Mt-EE 69% 78% 

80% 66% Mh-SC 64% 75% 

69% 62% Mh-JK 59% 70% 

80% 66% Mh-EE 68% 74% 

80% 67% Mth-SC 64% 75% 

82% 69% Mth-EE 68% 79% 

 

The R.E. in the estimate is only an indicator of 

accuracy. In practice, an estimator needs to be both 

accurate and precise. To understand precision, the 

variability of the R.E. for each fault count is calculated 

as the size of the interquartile range (i.e., the spread of 

the middle 50% of the data). Then, to combine 

accuracy and precision, three values are calculated for 

each fault count: a) the median estimate, b) the seventh 

largest estimate (75
th

 percentile), and c) the third 

largest estimate (25
th

 percentile). Together b) and c) 

define the interquartile range. Figure 4 shows this 

analysis for the Mh- JK estimator on artifact A, with the 

median R.E. estimate appearing between the upper 

(75
th

 percentile) and lower bound (25
th

 percentile) on 

the estimates. Similar graphs were produced for each 

estimator on each artifact. 

The criterion for selecting the minimum fault count 

will now consider the R.E. at three points (median, 75
th 

percentile, and 25
th

 percentile). The result of this 

analysis that combines accuracy and precision is shown 

in Table 4.  

Based these results, some general observations can 

be made: 

a) For artifact A, depending on the estimator, 

inspectors need to find anywhere between 62% 

and 67% of the total faults for the R.E. estimate to 

be within 20% of the actual value; and between 

69% and 82% of total faults for the R.E. estimate 

to be within 10% of the actual value, 

b) Similarly for artifact B, inspectors need to find 

anywhere between 59% and 69% of total faults for 

the R.E. estimate to be within 20% range; and 

between 70% and 79% of total faults for the R.E. 

estimate to be within 10% range, 

c) The Mh-JK estimator improves the fastest 

compared with the other estimators (i.e., it requires 

fewer faults to achieve an accurate and precise 

estimate), 

d) The variability (precision) is not affected much by 

the increase in the fault count, and 

e) The EE estimators for Mo, Mt, and Mth models had 

a high failure rate (i.e., did not produce an 

estimate). 

 Therefore, a significantly large percentage of faults 

have to be found before the CR models can provide 

satisfactory estimates. In terms of the relative 

performance, the Jackknife estimator (JK) is the best 

estimator. Project managers can perform a similar 

analysis after each inspection to identify any trend in 

fault count estimate to gain insights into the quality of 

an artifact under review. For example, if there is a 

continuous significant increase in the estimated fault 

count with increase in the faults found (as opposed to a 

point after which no improvement is visible), then it is 

likely that there are substantially more faults remaining 

in the artifact. The lack of an increase in the estimates 

indicates that a large percentage of faults have been 

found.     

 

5.2 Effect of the number of faults on the re-

inspection decision of artifacts 
 

The results in Section 5.1 compared the error in the 

CR estimates relative to the actual fault count (i.e., total 

faults found after two inspections). However, during 

real software development, a project manager does not 

know the actual fault count. Therefore, they have to 

make a re-inspection decision based only on the 

number of faults found during an inspection and the 

estimate of the remaining faults. 

This section re-calculates the R.E. values for each 

fault count, where the actual number of faults is set 
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Figure 5. Relative estimate of remaining 

faults for all defect counts for artifact A 
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Figure 6. Relative estimate of remaining 

defects for all fault counts for artifact B 
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Figure 8. Comparison of estimate and 

actual relative error for Mh-SC on artifact B 
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Figure 7. Comparison of estimate and 

actual relative error for Mh-SC on artifact A 

equal to the particular fault count being studied. For 

example, for artifact A and fault count equal to 37, Mh-

JK estimator produced a median estimate of 49 faults. 

Therefore, the R.E. = (49-37)/37 = 0.32. Meaning that 

an estimated 32% more faults are remaining. Figure 5 

and Figure 6 shows the relative estimates of the 

remaining faults from all the CR estimators at each 

fault count for artifacts A and B respectively.  

To analyze the effect of the fault count on the re-

inspection decision, the estimate of remaining faults is 

compared against 20% criterion (i.e., if the estimate is 

greater than 20%, a re-inspection should be performed, 

otherwise no). The general observations from these 

figures are: 

a) All the estimators (except EE and UMLE) failed 

for a fault count of less than five. The EE and 

UMLE estimators failed for fault counts up to 13, 

b) For artifact A, the CR estimators (except Mth-EE 

and Mh-JK) suggest the need for re-inspection 

when the fault count is between 5 and 40. The Mh-

JK indicates a need for re-inspection when the 

fault count is between 3 and 49.  

c) For artifact B, the SC estimator for Mh and Mth 

suggest the need for re-inspections when the fault 

count is less than 76. The remaining estimators 

(except Mh-JK) indicate the need for re-inspection 

when the fault count is less than 86. Mh-JK 

suggests the need for re-inspection when the fault 

count is less than 98.       

Because the estimator fail when the fault count is 

less than five, for faults counts greater than five, we 

evaluated the correctness of the decision to re-inspect 

artifacts A and B for all the CR estimators. The process 

for evaluating the correctness is to compare the R.E. in 

the estimate produced by the CR estimators to the R.E. 

in the estimate using an ideal estimate (i.e. the CR 

estimators are perfect). The calculation of these two 

R.E values is described as: 

a) R.E in the remaining faults produced by CR 

estimators: 

R.E = (estimate – actual) / actual; where actual = 

fault count being analyzed and estimate = fault 

count estimated by CR estimators 

b) Ideal R.E in the remaining faults: 

R.E = (estimate – actual) / actual; where actual = 

same as in a) and estimate = 55 for artifact A and 

105 for artifact B. 

For example, for artifact A, R.E in the estimate 

produced by the Mh-SC estimator at a fault count of 29 

= (36.25 – 29) /29 = 0.25 i.e., 25%, and the ideal R.E. 

= (55 – 29) /29 =0.89 i.e., 89%.  

Figure 7 shows this analysis graphically for the Mh-



Table 5. Correctness of re-inspection 

decisions for artifacts A and B 

 

Artifact A Artifact B 
Incorrect 

decision 

Correct 

decision 

Correct 

decision 

Incorrect 

decision 

Less than 
5 faults  

  Less than 
5 faults 

41-44 
faults 

7-41 faults 9-76 faults 77-85 
faults 

47-49 
faults for 

Mh-JK 

3-45 faults 
for Mh-JK 

3-86 faults 
for Mh-JK 

86-97 
faults for 

Mh-JK 
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Figure 9. Remaining fauts at different 

percentage of total faults for both artifacts  

SC estimator at all fault counts on artifact A from five 

to 55 faults. Similarly, Figure 8 shows the analysis for 

Mh-SC on artifact B. The solid line represents the R.E 

in the estimates produced by the Mh-SC estimator and 

the dotted line represents the ideal R.E. values.  

The dotted lines in Figure 7 and Figure 8 touch the 

20% axis at fault count of 45 for artifact A and 86 for 

artifact B (i.e., after this point the estimates are always 

within 20% of the actual). Comparing the R.E. in the 

estimates produced by CR estimators vs. the ideal R.E 

yields following observations: 

a) The CR estimators severely underestimate the 

actual fault count, however, at most fault counts 

the CR estimators can accurately predict the need 

for a re-inspection (by predicting that more than 

20% of the faults remain). 

b)  Regarding a correct or incorrect re-inspection  

decision: 

a. For artifact A, the estimators correctly 

suggest the need for re-inspection for 5-40 

faults, and the JK estimator makes the correct 

suggestion for 3-45 faults. 

b. For artifact B, estimators correctly suggest 

the need for re-inspection for 5-76 faults, and 

JK estimator estimates the need correctly for 

3-86 faults.  

c. However, the JK estimator incorrectly 

suggests the need for re-inspection for 47-49 

faults for artifact A and for 87-98 faults for 

artifact B. 

 This result is shown in Table 5. The result show that 

the Jackknife (JK) estimator is able to accurately 

predict the need for re-inspection for fault counts up to 

44 (in artifact A) and 86 (in artifact B). However, it 

estimates that there are still some faults remaining for 

fault count up to 49 faults (in artifact A) and 97 (in 

fault B). One caveat to this analysis is that we assumed 

the actual fault count to be equal to the number of 

faults found after two inspections. There might actually 

be some more faults in the document. Therefore, we 

suggest Jackknife as the best estimator. 

  

5.3 Use of the results to managers on their 

software projects 
 

 The results in Sections 5.1 and 5.2 provided 

insights into the: 1) the percentage of faults that have to 

be found to obtain an accurate CR estimate, and 2) the 

ability of different CR estimators to correctly predict 

the need for re-inspection. This section provides some 

additional insights into how project managers can use 

these results to manage projects in their organization.  

 In real development the number of faults in an 

artifact is unknown. Therefore, a project manager has 

to make re-inspection decisions using only the 

knowledge of the faults that have been found up to that 

point. To understand the general trend in the estimates 

from the CR estimators, Figure 9 plots the percentage 

of remaining faults for increasing percentages of total 

faults for artifact A (solid line) and B (dotted line).  

 The percentage of remaining faults is calculated as:  

[(Estimated number of faults – Number of faults found) 

/ Number of faults found]* 100.  

 Each line connects the median value of the 

percentage of remaining faults from all the CR 

estimators (except Mth-EE estimator because of its 

failure rate). Some general observations from Figure 9 

are summed as follows: 

a) The estimators fail to produce an estimate when less 

than only 1% of the faults have been found; 

b) The estimators consistently (and accurately) predict 

the need for a re-inspection (i.e., more than 20% of 

the faults remain) up to the point when 

approximately 75% of the total faults have been 

found (this figure is similar for both artifacts).  

 Therefore, a project manager should allow a re-



inspection as long as the estimators predict the need for 

one. Each organization can perform a similar analysis 

to ensure these trends are valid. Understanding the 

trend in the estimates will help project managers decide 

on the portion of faults that have been discovered and 

how long the inspection process should continue. 

However, a project manager has to make a trade-off 

between the cost involved in re-inspection and benefits 

of finding more faults.   

 

6. Threats to validity 
 

Some validity threats were addressed. The artifacts 

used in this study were real software artifacts that were 

later used to guide implementation of a real system. 

The faults were naturally occurring and inserted while 

developing the artifacts rather than being artificially 

seeded.  

However, there were some threats to validity that 

were not addressed. First, the actual number of faults in 

each document is unknown and might be higher than 

the assumed fault count (i.e., the total number of faults 

found after two inspections). The effect of this threat 

on the results is discussed in next section. A second 

threat was the artifacts used in this study were 

developed by student teams in a senior-level capstone 

course and may not be representative of industrial 

requirement documents. Also, the nature of faults 

committed by students may differ from faults made by 

professionals.    

 

7. Discussion of results 
 

 This section relates the results from Section 5 to the 

main research questions posed for this study. Then it 

provides a discussion of the relevance of the results to 

software organizations. 

 

7.1. Findings and recommendations 
 

RQ1: How does the relative performance of the CR 

estimators improve as a larger percentage of faults are 

discovered? 

 The increase in the number of faults directly 

improves the accuracy of estimators with little 

improvement in precision (or variability). Based on the 

results from Section 5.1, the CR estimators (except 

Mth-EE) can be used on artifacts that contain five or 

more faults to produce some estimate. However, the 

CR estimators require inspectors to find a significantly 

large percentage of total faults (between 60% to 70%) 

in order to achieve a satisfactory estimate (i.e., an 

estimate within 20% of the actual fault count). 

Considering the fact that the actual number of faults 

might be more than assumed for this study, the 

percentage of faults that have to be found might be 

even higher. Therefore, the CR estimators severely 

underestimate the actual fault count when a smaller 

percentage of the total faults have been found. 

 In terms of the relative performances of the CR 

estimators, the JK estimator shows the fastest 

improvement in accuracy compared with the other 

estimators. As a result, it requires fewer faults to 

achieve same level of estimation accuracy.   

 

RQ2: How is the re-inspection decision ability of the 

CR estimators affected with an increase in the fault 

count? 

  Even though the estimator severely underestimates 

at different fault counts, it correctly predicts the need 

for re-inspection very consistently. Based on the results 

from Section 5.2, the CR estimates should not be used 

for fault counts of less than six for deciding on the need 

of re-inspections (because of their high rate of failure). 

In addition, the Mth-EE estimator fails to produce an 

estimate using count of as much as thirteen faults. 

Therefore, Mth-EE estimator is not recommended. 

 The results showed that the CR estimators helped 

made the correct re-inspection decision at most (but not 

all) of the higher fault counts. In addition, the Mh-JK 

estimator provided accurate re-inspection decision at 

more fault counts than the other estimators.  Therefore, 

the JK estimator is recommended as the best estimator. 

Based on the findings from this study, an important 

recommendation is that a project manager should not 

trust the actual number of estimate faults remaining. 

However, he/she can trust the suggestion of need for 

re-inspection decision based on the 20% threshold. 

 Table 6 compares the important findings from this 

study that confirm some findings while contradict some 

other findings from previous CR studies in software 

engineering.     

 

7.2. Relevance to software organizations 

  
  A project manager needs to decide whether or not 

to re-inspect an artifact in real time. To accurately use 

the CR models, it is imperative to know the relative 

performance of the different CR estimators and their 

ability to correctly predict the need for re-inspection 

based only on the faults found in previous inspections. 

The results in this paper provide insights into the 

relative performance of the different CR estimators 

with respect to varying fault counts and how the CR 

estimates can help manage the inspection process.    

 



Table 6. Comparison of findings 

 

 Previous Studies Our Study 

1 The CR estimators underestimate but improve with 

more faults and inspectors [2, 9, 14] 

CONFIRM. CR estimators produce no estimate for less than 5 

faults. We report the percentage of faults that have to be 

discovered for varying levels of estimation accuracy.     

2 No big improvement in accuracy for more than six 

faults [2] 

CONTRADICT. We found linear improvement in the 

estimates beyond six faults due to the larger fault data used 

3 Mh-JK overestimates if the overlap of faults is small 

[14, 10, 14] 

CONTRADICT. Mh-JK can produce satisfactory estimate for 

as few as 3 faults 

4 Mh-JK is the best estimator [2, 8, 10] CONFIRM. The JK estimator showed the fastest 

improvement. It is the best estimator 

5 The UMLE, EE estimators have high failure rates [9] CONFIRM. 

6  The CR estimators can accurately predict the need for 

re-inspection [13] 

CONFIRM. The CR estimators can be trusted to make a re-

inspection decision using the 20% threshold 

 

8. Conclusion and future work 
 

 The results in this paper show project managers and 

how to monitor the quality of artifacts by using CR 

estimates to understand the percentage of faults that 

remain in an artifact. This study is by no means a 

complete investigation of the factors that influence the 

CR analysis. However, we have investigated the effect 

of the number of inspectors (in an earlier study) and the 

number of faults (in this study) in isolation. Our 

immediate next efforts will be to understand the 

combined effect of these two factors by varying both 

the inspection team size and number of faults together.      
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