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Abstract 

 
Despite the critical role of software modifiability, it 

has no universally accepted measurement model. 
Measuring modifiability in terms of maintenance effort 
is problematic because it confounds modifiability with 
the ability of individual maintainers. In this paper, we 
apply Wood’s task complexity model to propose a 
general analytical model that describes the 
characteristics of maintenance tasks and the analytical 
dimensions of modifiability independent of the 
individual maintainers. The results of a case study 
demonstrate the construct validity of the model.  
 
1. Introduction 
 

Developing software that is easy to change is 
difficult. Due to constantly evolving requirements and 
hardware, most software is modified many times after 
its first release. Recent studies report that more than 
90% of software costs are caused by maintenance and 
evolution [1]. Therefore, stakeholders expect a system 
to be designed so that it can be changed quickly and 
economically. This quality is referred as modifiability. 

Modifiability is the ease of changing a system or 
component in response to a change request [2]. Other 
terms such as maintainability, changeability, and 
flexibility are often used to describe the same concept. 
Despite the critical role of software modifiability, there 
is no universally accepted measurement model.  
Sometimes modifiability is measured as maintenance 
performance, in terms of maintenance effort [3, 4], the 
number of faults introduced [5], or “perceived 
modifiability” – subjective opinion about the ease of 
changing software [6]. Sometimes modifiability is 
measured by a model of internal quality attributes (e.g. 
structural design properties) [7]. Neither performance 
measures nor internal quality models have sufficient 

construct validity for modifiability measurement. The 
former confounds modifiability with individual 
attributes, substituting a dependent variable (the 
outcome of the process) for an independent variable 
(inputs to the process). The latter ignores the effect of 
the change request, which is specified by definition. In 
this paper we propose a modifiability measurement 
model to address these problems. 

 
2. Background 
 

If software maintenance is treated as an 
information-processing task, then the theory of tasks 
analysis can be applied. Wood proposed the task 
complexity model to address the lack of an adequate 
theoretical model for describing task variation in 
studies of human behavior [8]. This variation makes it 
difficult or impossible to integrate evidence of task 
effects from different studies. Wood adopted a 
theoretical approach and synthesized previous 
analytical frameworks into a general model of tasks 
with three essential components: products, acts, and 
info cues [8]. The products are the output of the task; 
the acts and info cues are the input to the task. 
Products: “entities created or produced by behaviors, 
which can be observed and described independently of 
the behaviors or acts that produce them” [8]. 
Acts: “the patterns of behaviors with some identifiable 
purpose or direction” [8] 
Info cues: “pieces of information about the attributes 
of stimulus objects upon which an individual can base 
the judgments he or she is required to make during the 
performance of a task” [8] 

Three analytical dimensions describe task 
complexity: component, coordinate and dynamic. 
Total complexity is determined by all three dimensions. 
Component Complexity: “function of the number of 
distinct acts that need to be executed in the 
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performance of the task and the number of distinct info 
cues that must be processed in the performance of 
those acts” [8]. 
Coordinative Complexity: “nature of relationships 
between task inputs and task products” [8]. The form, 
strength, and sequencing of the relationships are all 
considered to be aspects of coordinative complexity. 
Dynamic Complexity: “changes in the states of the 
world which have an effect on the relationships 
between tasks and products” [8]. 

The components and dimensions of complexity in 
Wood’s model describe stable task properties that can 
be specified independently of the task performers. 

 
3. A Model of Software Modifiability 
3.1. Model Constructs 

Wood’s model provides a general approach to task 
complexity analysis. Task complexity characterizes the 
difference among task inputs and the relationship 
between task inputs and outputs. Software 
maintenance can be viewed as an information-
processing task in which maintainers perceive, 
interpret and manipulate info cues (task inputs) and the 
relationships among them to identify task outcomes [5]. 
The info cues and the acts required to process these 
cues set upper limits on the knowledge, skills and 
resources required to successfully complete the task. 
Therefore, the required acts, info cues, and the 
relationship among them help identify the difficulty of 
the maintenance task. It is natural to draw parallels 
between task complexity and software modifiability. 
Wood’s model allows us to describe the properties and 
difficulty of the maintenance task independent of the 
maintainers. This independence differentiates our 
model from existing performance measures. By 
mapping Wood’s model to software maintenance, we 
derived the model of maintenance tasks and 
modifiability shown in Table 1. 

Acts are defined as actions dealing with code. 
Because our definition of modifiability is the ease of 
changing a software system, we focus on the actions 
required to implement a change, i.e. adding, modifying 
or deleting code. While the change process does 
involve actions other than “coding”, like, “reading” 
and “thinking”, those cognitive activities are difficult, 
if not impossible, to identify from the maintenance 
tasks. The coding actions, by contrast, are more 
“physical” and thus easier to specify and identify. 

Info cues (ic) are defined as the information pieces 
from the change request or the software system 
because these are the two sources of difficulty. 

Our model specifies modifiability in terms of task 
complexity. A more complex maintenance task leads to 
less modifiable software. In other words, a high value 
for component complexity or coordinate complexity 
indicates low modifiability. 

Table 1 Mapping Wood’s Model to Software Modifiability 
Wood’s 

Model [8] Modifiability Model 

Product Changed Software System 

Act Different types of change actions, e.g. 
addition, deletion, or modification of code 

Info Cues 
Pieces of information required from 

software systems and change requests to 
perform the acts properly. 

Component 
Complexity

A measure of the number of change actions, 
weighted by the amount of information cues 

processed by that action 
Coordinate 
Complexity

A measure of the relationship (e.g. ordering) 
between different change actions 

Dynamic 
Complexity Not considered in current model. 

 
3.2. Measurement Protocol 

The proposed model is abstract enough to apply to a 
variety of maintenance environments. For validation, 
we need a measurement protocol to obtain the 
measurement values consistently and repeatably. 
Therefore, we specified a measurement process of 
identifying model components (acts, info cues) and 
calculating modifiability in different dimensions 
(component, coordinate). 

Wood’s model can specify task complexity 
independently of individual attributes because the 
analytical constructs are identified a priori from the 
task specification.  In the case of software maintenance 
tasks, however, the change request and the system 
specify the requirements for the change, rather than 
how to make the change.  The acts and info cues are 
not as evident in this context as they are in Wood’s. 

Instead of guessing the acts and info cues for a 
change request and system, we examine the actual 
change implementations by maintainers. Acts can be 
identified by determining whether code is added, 
modified, or deleted.  The info cues are then limited to 
the information pieces referenced in the changed code. 
We are unable to track the cognitive activities of the 
maintainers. Thus we can only make inferences about 
the information processed by them based on what is 
actually documented, i.e. the changes made to the code. 
These info cues set the minimum requirement on the 
information needed to perform the change task. The 
maintainers must acquire and process these 
information pieces before they can reference them in 
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the code. The only problem is that the acts and info 
cues identified may be affected by individual 
maintainers (e.g. programming style, expertise). Our 
hypothesis is that there is a subset of acts and info cues 
that are determined by the change request and software 
system, independent of individual maintainers. This 
hypothesis will be tested in model validation. 

The info cues are extracted in units, i.e. Program 
Elements (PEs), including attributes, local variables, 
parameters, methods, classes, and constants. We refer 
methods as M_type PEs and the other PEs as O_type. 
While these PEs are specific to the Java language, 
similar PEs can be defined for other OO languages. 

For the modifiability dimensions, we began with 
component complexity. Coordinate complexity will be 
examined in future. To measure component complexity, 
we need to specify how to measure a single info cue 
and how to calculate the overall complexity for all the 
info cues. 

To measure the amount of information in a single 
info cue, we have initially chosen a simple size 
measure, assuming that the larger an information cue is, 
the more information it contains. We developed three 
size measures as follows (the size of an info cue ic is 
denoted as S(ic)): 
 For info cues ic from change requests, S(ic)=1. 
 For O_type ic (from the original code), if ic is not Class 
or instance of Class (e.g. int, String, etc.), then S(ic)=1. 

S1: LOC (lines of code)  
 For O_type ic if ic is an instance of Class C, S1(ic) = S1(C). 
 For M_type ic, S1(ic) = LOC(ic).  
 For Class C, S1(C) = LOC(C). 

S2: MImpl (Method Implementation) 
 For O_type ic if ic is an instance of Class C, S2(ic) = S2(C). 

 For M_type ic, S2(ic) = ∑ (#Parameters, 
#Methods_invoked, #Attributes_referenced).  

 For Class C, S2(C) = ∑(#Attributes, S2(Methods)). 
S3: MIntl (Method Interface) 
 For O_type ic if ic is an instance of Class C, S3(ic) = S3(C). 

 For M_type ic, S3(ic) = ∑(#Parameters)  
 For Class C, S3(C) = ∑(#Attributes, S3(Methods)) 

S1 measures the complexity of the info cues in 
terms of the lines of code. S2 and S3 measure methods 
in terms of the number of PEs referenced. The 
difference between S2 and S3 is that S2 examines the 
method (white box view) while S3 examines only the 
interface (black box view). The underlying assumption 
of S2 is that method usage requires knowledge of 
method implementation, while for S3, only the 
interface is needed to use the method. 

In some cases, an ic is referenced more than once.  
It is unclear whether it is more difficult to process an ic 
the first time it is encountered than it is on subsequent 
encounters. We define an integration rule for each case: 
R assumes there is no difference in difficulty for 
subsequent observations of an ic while R’ assumes that 
subsequent encounters of an ic are easier to process. 
Therefore, there is 1 extra unit of complexity added for 
each subsequent encounter rather than adding in the 
full size. 
 R: TS = N* S(ic) 
 R’: TS = S(ic) + (N-1) 

TS denotes the total size of all the ics and N denotes 
the number of total encounters. Combining each 
measurement approach (S1, S2, S3) with each 
integration approach (R and R’) results in six measures 
M1, M1’, M2, M2’, M3, M3’. We tested our model for 
all six measures in the case study in section 4. 

3.3 Model Evaluation 
We demonstrate the construct validity of our model 

from the following three aspects: 
Face Validity: the components in the modifiability 

model are determined by software system and change 
request only, independent of individual maintainers. 

Concurrent Validity: the modifiability model can 
distinguish the difficulty of maintenance tasks. 

Predictive Validity: the modifiability model can 
predict the maintenance performance of the same 
maintainers on different maintenance tasks 

 
4. Case Study 

 
Before conducting our own controlled experiment, 

we validated our model using the data from an 
experiment conducted by Arisholm, et al. [9]. The goal 
of the original experiment was to compare the 
changeability of two designs, i.e. Responsibility-
Driven (RD) vs. Main Framework (MF). According to 
OO design principles, RD is the better design and thus 
should be more changeable. The concept of 
changeability is similar to modifiability as defined in 
our model. There were three change tasks. Each 
participant performed the changes on one of the two 
designs. The changeability of the designs was assessed 
based on change effort (time to finish the tasks), 
correctness (a subjective correctness score), and other 
measures. The results indicated that, contrary to the 
hypothesis, the good RD design required significantly 
more effort than the bad MF design and the RD design 
did not result in fewer errors than the MF design. 

We posed five hypotheses to test three types of 
construct validity: 
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H1 The Acts do not differ between subjects. 
H2 The Info cues do not differ between subjects. 
H3 For a given change request, the modifiability of 

MF and RD is related to the design approach.  
H4 For a given design (MF/RD), the modifiability of a 

change is correlated to its perceived difficulty. 
H5 Participant’s performance on a change is 

correlated to the modifiability of that change. 
H1 and H2 address face validity. H3 and H4 deal 

with concurrent validity. H5 assess predictive validity. 
Relative to face validity (H1 and H2), space does 

not allow us to show all of the acts and ic identified. 
The acts varied among subjects, while the ic 
referenced in the acts were relatively consistent for a 
given change task. There is a subset of ic that are 
consistent across the subjects in the same group (MF 
or RD) for a given change. Therefore, the results 
support H2 but not H1. 

We then measured the component complexity of the 
MF and RD designs for each change using all six 
measures shown in Table2 as below. 

Table 2 Component Complexity 
D M1 M1’ M2 M2’ M3 M3’ CH

21 21 15 15 14 14 C1
89 64 58 47 52 42 C2MF 
498 114 263 84 235 79 C3
21 21 15 15 14 14 C1
45 45 50 50 43 43 C2RD 
90 70 76 64 62 52 C3

For modifiability the relative order of metrics is 
more meaningful than the absolute values. There are 9 
comparisons for “relative modifiability”, three across 
software systems, i.e. MF vs. RD for C1, C2 and C3 
respectively, and six across changes, i.e. C1 vs. C2 vs. 
C3 for MF or RD. The results were consistent 
regarding relative modifiability for all 6 measures as 
follows (note that the lower component complexity, 
the higher modifiability.): 

For each change: 
C1: MF=RD; C2: MF<RD; C3: MF<RD 
For each software system: 
MF: C1 > C2 > C3;  RD: C1 > C2 > C3 
Our measurement results were confirmed by the 

difficulty level of the maintenance tasks determined a 
priori [10]. C1 is the easiest (highest modifiability) and 
C3 is the most difficult (lowest modifiability) for both 
MF and RD. When comparing across the designs, a 
detailed analysis (by experts) drew the same 
conclusion as our model: C1 had the same difficulty in 
both designs, but C2 and C3 were easier for RD than 
for MF. Therefore, H3 and H4 are supported. 

We used two performance measures from the 
original study to test H5: total time (maintenance effort) 
and correctness score (the quality of the changed code). 

Effort and correctness describe the task performance 
from different but competing perspectives. We 
combined them into a single metric by dividing time 
by correctness. Spending more time or delivering 
lower quality increase the value of this new 
performance metric. Therefore, a higher score 
indicates poorer performance. Results showed that for 
all 10 subjects, the performance on CH1 is the best. 
This result is consistent with the relative modifiability 
results mentioned above. The performance on CH2 is 
better than the performance on CH3 for 8 of the 10 
subjects. The two exceptions were both in the RD 
design group. Therefore, H5 is partially supported. 

In summary, the results of case study supported the 
face validity of the info cues as model components and 
the concurrent validity of the model. The results also 
partially assured the predictive validity. 

 
5. Conclusion 

 
In this paper, we propose an analytical model that 

describes the characteristics of maintenance tasks and 
the analytical dimensions of modifiability. By applying 
task analysis theory, the proposed model captures the 
difficulty (complexity) inherent in the maintenance 
task independent of individual characteristics of 
maintainers. Thus, the model provides more validity 
and stronger generalization for software maintenance 
studies (e.g. effort prediction). The model also 
provides greater insight into the relationship between 
internal software attributes (e.g. structural measures) 
and external attributes of maintenance process (e.g. 
effort). 

We will continue our research in the following 
directions: 

Refining Model Components: we will look for 
common patterns in maintainers’ behaviors to see if it 
is possible to identify more abstract acts that have 
construct validity. We will also extend the definition of 
info cues to include the control structure of the code in 
addition to PEs. 

Exploring Measures for Component & Coordinate 
Complexity: currently we used traditional size 
measures to measure the information contained in the 
cues. In the future, we will look at other areas like 
information theory for information-related measures. 

Controlled Experiments: we plan to conduct 
controlled experiments on a larger sample of subjects 
to further validate the proposed model. 
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