
Modifiability Measurement from a Task Complexity Perspective: A
Feasibility Study

Lulu He
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39759

lh221@cse.msstate.edu

Jeffrey Carver
Department of Computer Science

University of Alabama
Tuscaloosa, AL 35487

carver@cs.ua.edu

Abstract

Despite the critical role of software modifiability, it

has no universally accepted measurement model.
Measuring modifiability in terms of maintenance effort
is problematic because it confounds modifiability with
the ability of individual maintainers. In this paper, we
apply Wood’s task complexity model to propose a
general analytical model that describes the
characteristics of maintenance tasks and the analytical
dimensions of modifiability independent of the
individual maintainers. The results of a case study
demonstrate the construct validity of the model.

1. Introduction

Developing software that is easy to change is
difficult. Due to constantly evolving requirements and
hardware, most software is modified many times after
its first release. Recent studies report that more than
90% of software costs are caused by maintenance and
evolution [1]. Therefore, stakeholders expect a system
to be designed so that it can be changed quickly and
economically. This quality is referred as modifiability.

Modifiability is the ease of changing a system or
component in response to a change request [2]. Other
terms such as maintainability, changeability, and
flexibility are often used to describe the same concept.
Despite the critical role of software modifiability, there
is no universally accepted measurement model.
Sometimes modifiability is measured as maintenance
performance, in terms of maintenance effort [3, 4], the
number of faults introduced [5], or “perceived
modifiability” – subjective opinion about the ease of
changing software [6]. Sometimes modifiability is
measured by a model of internal quality attributes (e.g.
structural design properties) [7]. Neither performance
measures nor internal quality models have sufficient

construct validity for modifiability measurement. The
former confounds modifiability with individual
attributes, substituting a dependent variable (the
outcome of the process) for an independent variable
(inputs to the process). The latter ignores the effect of
the change request, which is specified by definition. In
this paper we propose a modifiability measurement
model to address these problems.

2. Background

If software maintenance is treated as an
information-processing task, then the theory of tasks
analysis can be applied. Wood proposed the task
complexity model to address the lack of an adequate
theoretical model for describing task variation in
studies of human behavior [8]. This variation makes it
difficult or impossible to integrate evidence of task
effects from different studies. Wood adopted a
theoretical approach and synthesized previous
analytical frameworks into a general model of tasks
with three essential components: products, acts, and
info cues [8]. The products are the output of the task;
the acts and info cues are the input to the task.
Products: “entities created or produced by behaviors,
which can be observed and described independently of
the behaviors or acts that produce them” [8].
Acts: “the patterns of behaviors with some identifiable
purpose or direction” [8]
Info cues: “pieces of information about the attributes
of stimulus objects upon which an individual can base
the judgments he or she is required to make during the
performance of a task” [8]

Three analytical dimensions describe task
complexity: component, coordinate and dynamic.
Total complexity is determined by all three dimensions.
Component Complexity: “function of the number of
distinct acts that need to be executed in the

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
430

performance of the task and the number of distinct info
cues that must be processed in the performance of
those acts” [8].
Coordinative Complexity: “nature of relationships
between task inputs and task products” [8]. The form,
strength, and sequencing of the relationships are all
considered to be aspects of coordinative complexity.
Dynamic Complexity: “changes in the states of the
world which have an effect on the relationships
between tasks and products” [8].

The components and dimensions of complexity in
Wood’s model describe stable task properties that can
be specified independently of the task performers.

3. A Model of Software Modifiability
3.1. Model Constructs

Wood’s model provides a general approach to task
complexity analysis. Task complexity characterizes the
difference among task inputs and the relationship
between task inputs and outputs. Software
maintenance can be viewed as an information-
processing task in which maintainers perceive,
interpret and manipulate info cues (task inputs) and the
relationships among them to identify task outcomes [5].
The info cues and the acts required to process these
cues set upper limits on the knowledge, skills and
resources required to successfully complete the task.
Therefore, the required acts, info cues, and the
relationship among them help identify the difficulty of
the maintenance task. It is natural to draw parallels
between task complexity and software modifiability.
Wood’s model allows us to describe the properties and
difficulty of the maintenance task independent of the
maintainers. This independence differentiates our
model from existing performance measures. By
mapping Wood’s model to software maintenance, we
derived the model of maintenance tasks and
modifiability shown in Table 1.

Acts are defined as actions dealing with code.
Because our definition of modifiability is the ease of
changing a software system, we focus on the actions
required to implement a change, i.e. adding, modifying
or deleting code. While the change process does
involve actions other than “coding”, like, “reading”
and “thinking”, those cognitive activities are difficult,
if not impossible, to identify from the maintenance
tasks. The coding actions, by contrast, are more
“physical” and thus easier to specify and identify.

Info cues (ic) are defined as the information pieces
from the change request or the software system
because these are the two sources of difficulty.

Our model specifies modifiability in terms of task
complexity. A more complex maintenance task leads to
less modifiable software. In other words, a high value
for component complexity or coordinate complexity
indicates low modifiability.

Table 1 Mapping Wood’s Model to Software Modifiability
Wood’s

Model [8] Modifiability Model

Product Changed Software System

Act Different types of change actions, e.g.
addition, deletion, or modification of code

Info Cues
Pieces of information required from

software systems and change requests to
perform the acts properly.

Component
Complexity

A measure of the number of change actions,
weighted by the amount of information cues

processed by that action
Coordinate
Complexity

A measure of the relationship (e.g. ordering)
between different change actions

Dynamic
Complexity Not considered in current model.

3.2. Measurement Protocol

The proposed model is abstract enough to apply to a
variety of maintenance environments. For validation,
we need a measurement protocol to obtain the
measurement values consistently and repeatably.
Therefore, we specified a measurement process of
identifying model components (acts, info cues) and
calculating modifiability in different dimensions
(component, coordinate).

Wood’s model can specify task complexity
independently of individual attributes because the
analytical constructs are identified a priori from the
task specification. In the case of software maintenance
tasks, however, the change request and the system
specify the requirements for the change, rather than
how to make the change. The acts and info cues are
not as evident in this context as they are in Wood’s.

Instead of guessing the acts and info cues for a
change request and system, we examine the actual
change implementations by maintainers. Acts can be
identified by determining whether code is added,
modified, or deleted. The info cues are then limited to
the information pieces referenced in the changed code.
We are unable to track the cognitive activities of the
maintainers. Thus we can only make inferences about
the information processed by them based on what is
actually documented, i.e. the changes made to the code.
These info cues set the minimum requirement on the
information needed to perform the change task. The
maintainers must acquire and process these
information pieces before they can reference them in

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
431

the code. The only problem is that the acts and info
cues identified may be affected by individual
maintainers (e.g. programming style, expertise). Our
hypothesis is that there is a subset of acts and info cues
that are determined by the change request and software
system, independent of individual maintainers. This
hypothesis will be tested in model validation.

The info cues are extracted in units, i.e. Program
Elements (PEs), including attributes, local variables,
parameters, methods, classes, and constants. We refer
methods as M_type PEs and the other PEs as O_type.
While these PEs are specific to the Java language,
similar PEs can be defined for other OO languages.

For the modifiability dimensions, we began with
component complexity. Coordinate complexity will be
examined in future. To measure component complexity,
we need to specify how to measure a single info cue
and how to calculate the overall complexity for all the
info cues.

To measure the amount of information in a single
info cue, we have initially chosen a simple size
measure, assuming that the larger an information cue is,
the more information it contains. We developed three
size measures as follows (the size of an info cue ic is
denoted as S(ic)):
 For info cues ic from change requests, S(ic)=1.
 For O_type ic (from the original code), if ic is not Class
or instance of Class (e.g. int, String, etc.), then S(ic)=1.

S1: LOC (lines of code)
 For O_type ic if ic is an instance of Class C, S1(ic) = S1(C).
 For M_type ic, S1(ic) = LOC(ic).
 For Class C, S1(C) = LOC(C).

S2: MImpl (Method Implementation)
 For O_type ic if ic is an instance of Class C, S2(ic) = S2(C).

 For M_type ic, S2(ic) = ∑ (#Parameters,
#Methods_invoked, #Attributes_referenced).

 For Class C, S2(C) = ∑(#Attributes, S2(Methods)).
S3: MIntl (Method Interface)
 For O_type ic if ic is an instance of Class C, S3(ic) = S3(C).

 For M_type ic, S3(ic) = ∑(#Parameters)
 For Class C, S3(C) = ∑(#Attributes, S3(Methods))

S1 measures the complexity of the info cues in
terms of the lines of code. S2 and S3 measure methods
in terms of the number of PEs referenced. The
difference between S2 and S3 is that S2 examines the
method (white box view) while S3 examines only the
interface (black box view). The underlying assumption
of S2 is that method usage requires knowledge of
method implementation, while for S3, only the
interface is needed to use the method.

In some cases, an ic is referenced more than once.
It is unclear whether it is more difficult to process an ic
the first time it is encountered than it is on subsequent
encounters. We define an integration rule for each case:
R assumes there is no difference in difficulty for
subsequent observations of an ic while R’ assumes that
subsequent encounters of an ic are easier to process.
Therefore, there is 1 extra unit of complexity added for
each subsequent encounter rather than adding in the
full size.
 R: TS = N* S(ic)
 R’: TS = S(ic) + (N-1)

TS denotes the total size of all the ics and N denotes
the number of total encounters. Combining each
measurement approach (S1, S2, S3) with each
integration approach (R and R’) results in six measures
M1, M1’, M2, M2’, M3, M3’. We tested our model for
all six measures in the case study in section 4.

3.3 Model Evaluation
We demonstrate the construct validity of our model

from the following three aspects:
Face Validity: the components in the modifiability

model are determined by software system and change
request only, independent of individual maintainers.

Concurrent Validity: the modifiability model can
distinguish the difficulty of maintenance tasks.

Predictive Validity: the modifiability model can
predict the maintenance performance of the same
maintainers on different maintenance tasks

4. Case Study

Before conducting our own controlled experiment,

we validated our model using the data from an
experiment conducted by Arisholm, et al. [9]. The goal
of the original experiment was to compare the
changeability of two designs, i.e. Responsibility-
Driven (RD) vs. Main Framework (MF). According to
OO design principles, RD is the better design and thus
should be more changeable. The concept of
changeability is similar to modifiability as defined in
our model. There were three change tasks. Each
participant performed the changes on one of the two
designs. The changeability of the designs was assessed
based on change effort (time to finish the tasks),
correctness (a subjective correctness score), and other
measures. The results indicated that, contrary to the
hypothesis, the good RD design required significantly
more effort than the bad MF design and the RD design
did not result in fewer errors than the MF design.

We posed five hypotheses to test three types of
construct validity:

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
432

H1 The Acts do not differ between subjects.
H2 The Info cues do not differ between subjects.
H3 For a given change request, the modifiability of

MF and RD is related to the design approach.
H4 For a given design (MF/RD), the modifiability of a

change is correlated to its perceived difficulty.
H5 Participant’s performance on a change is

correlated to the modifiability of that change.
H1 and H2 address face validity. H3 and H4 deal

with concurrent validity. H5 assess predictive validity.
Relative to face validity (H1 and H2), space does

not allow us to show all of the acts and ic identified.
The acts varied among subjects, while the ic
referenced in the acts were relatively consistent for a
given change task. There is a subset of ic that are
consistent across the subjects in the same group (MF
or RD) for a given change. Therefore, the results
support H2 but not H1.

We then measured the component complexity of the
MF and RD designs for each change using all six
measures shown in Table2 as below.

Table 2 Component Complexity
D M1 M1’ M2 M2’ M3 M3’ CH

21 21 15 15 14 14 C1
89 64 58 47 52 42 C2MF
498 114 263 84 235 79 C3
21 21 15 15 14 14 C1
45 45 50 50 43 43 C2RD
90 70 76 64 62 52 C3

For modifiability the relative order of metrics is
more meaningful than the absolute values. There are 9
comparisons for “relative modifiability”, three across
software systems, i.e. MF vs. RD for C1, C2 and C3
respectively, and six across changes, i.e. C1 vs. C2 vs.
C3 for MF or RD. The results were consistent
regarding relative modifiability for all 6 measures as
follows (note that the lower component complexity,
the higher modifiability.):

For each change:
C1: MF=RD; C2: MF<RD; C3: MF<RD
For each software system:
MF: C1 > C2 > C3; RD: C1 > C2 > C3
Our measurement results were confirmed by the

difficulty level of the maintenance tasks determined a
priori [10]. C1 is the easiest (highest modifiability) and
C3 is the most difficult (lowest modifiability) for both
MF and RD. When comparing across the designs, a
detailed analysis (by experts) drew the same
conclusion as our model: C1 had the same difficulty in
both designs, but C2 and C3 were easier for RD than
for MF. Therefore, H3 and H4 are supported.

We used two performance measures from the
original study to test H5: total time (maintenance effort)
and correctness score (the quality of the changed code).

Effort and correctness describe the task performance
from different but competing perspectives. We
combined them into a single metric by dividing time
by correctness. Spending more time or delivering
lower quality increase the value of this new
performance metric. Therefore, a higher score
indicates poorer performance. Results showed that for
all 10 subjects, the performance on CH1 is the best.
This result is consistent with the relative modifiability
results mentioned above. The performance on CH2 is
better than the performance on CH3 for 8 of the 10
subjects. The two exceptions were both in the RD
design group. Therefore, H5 is partially supported.

In summary, the results of case study supported the
face validity of the info cues as model components and
the concurrent validity of the model. The results also
partially assured the predictive validity.

5. Conclusion

In this paper, we propose an analytical model that

describes the characteristics of maintenance tasks and
the analytical dimensions of modifiability. By applying
task analysis theory, the proposed model captures the
difficulty (complexity) inherent in the maintenance
task independent of individual characteristics of
maintainers. Thus, the model provides more validity
and stronger generalization for software maintenance
studies (e.g. effort prediction). The model also
provides greater insight into the relationship between
internal software attributes (e.g. structural measures)
and external attributes of maintenance process (e.g.
effort).

We will continue our research in the following
directions:

Refining Model Components: we will look for
common patterns in maintainers’ behaviors to see if it
is possible to identify more abstract acts that have
construct validity. We will also extend the definition of
info cues to include the control structure of the code in
addition to PEs.

Exploring Measures for Component & Coordinate
Complexity: currently we used traditional size
measures to measure the information contained in the
cues. In the future, we will look at other areas like
information theory for information-related measures.

Controlled Experiments: we plan to conduct
controlled experiments on a larger sample of subjects
to further validate the proposed model.

Acknowledgements Work partially supported by NSF
grant CCF-0438923

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
433

References

[1] L. Erlikh, “Leveraging legacy system dollars for e-
business”, IT Professional, 2000. 2(3): pp. 17-23.
[2] ISO/IEC.2000. Information technology -Software product
quality–Part1:Quality model. ISO/IEC FDIS 9126-1:2000(E)
[3] D.P. Darcy, C.F. Kemerer, and S.A. Slaughter, “The
Structural Complexity of Software: An Experimental Test”,
IEEE Transactions on Software Engineering, 2005. 31(11).
[4] M. Polo, M. Piattini, and F. Ruiz, “Using code metrics to
predict maintenance of legacy programs: A case study”, in
2001 IEEE International Conference on Software
Maintenance. 2001. Florence, Italy: IEEE Computer Society.
[5] D.L. Lanning and T.M. Khoshgoftaar, “Modeling the
relationships between source code complexity and
maintenance difficulty”, Computer, 1994. 27(9): pp. 35-40.

[6] L.C. Briand and J. Wuest, “Empirical Studies of Quality
Models in Object-Oriented Systems”, Advances in
Computers, 2002.59: pp.97-166
[7] D. Kozlov et al., “Assessing maintainability changes over
multiple software releases”, Journal of Software Maintenance
and Evolution: Research and Practice, 2008. 20(1): pp. 31-58.
[8] R.E. Wood, “Task Complexity: Definition of the
Construct”, Organizational Behavior and Human Decision
Process, 1986. 37: pp. 60-82.
 [9] E. Arisholm, D.I.K. Sjøberg, and M. Jørgensen,
“Assessing the Changeability of two Object-Oriented Design
Alternatives - a Controlled Experiment”, Empirical Software
Engineering, 2001. 6(3): pp. 231-277
[10] A. I. Wang and E. Arisholm, “The Effect of Task Order
on the Maintainability of Object-Oriented Software”,
Information and Software Technology, 2009.51(2):pp.293-305.

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
434

