
Requirement Error Abstraction and Classification: A Control Group
Replicated Study

Gursimran S. Walia, Jeffrey C. Carver, and Thomas Philip

Mississippi State University
{gw86, carver, philip}@cse.msstate.edu

Abstract

This paper is the second in a series of empirical
studies about requirement error abstraction and
classification as a quality improvement approach. The
Requirement error abstraction and classification
method supports the developers’ effort in efficiently
identifying the root cause of requirements faults. By
uncovering the source of faults, the developers can
locate and remove additional related faults that may
have been overlooked, thereby improving the quality
and reliability of the resulting system. This study is a
replication of an earlier study that adds a control
group to address a major validity threat. The approach
studied includes a process for abstracting errors from
faults and provides a requirement error taxonomy for
organizing those errors. A unique aspect of this work is
the use of research from human cognition to improve
the process. The results of the replication are
presented and compared with the results from the
original study. Overall, the results from this study
indicate that the error abstraction and classification
approach improves the effectiveness and efficiency of
inspectors. The requirement error taxonomy is viewed
favorably and provides useful insights into the source
of faults. In addition, human cognition research is
shown to be an important factor that affects the
performance of the inspectors. This study also provides
additional evidence to motivate further research.

1. Introduction
Software quality is a major issue for software

engineers. Various quality improvement approaches
have focused on faults as an indication of problems
early in the development process. To accomplish this
goal, these approaches provide guidance to developers
on the identification of faults [2, 3, 4, 5, 7, 8].
However, even with these approaches, the desired level
of quality is not always achieved because identification
of faults can not always reveal all the problems. There
is a need to understand the actual underlying cause of

the defects. To address this need, the research
described in this paper goes a step back from faults to
focus on the underlying cause of faults (i.e., errors) to
improve software quality.

A detailed systematic literature review identified
several methods that use the sources of faults as a
means to improve quality. In analyzing the strengths
and weaknesses of these methods, it became clear that
most of them do not provide developers with an easy
mechanism to use this information in practice [13].

Lanubile et al. provided evidence of the usefulness
of error information in requirements inspection. They
differentiated between error (a mistake in the human
thought process) and fault (a concrete manifestation of
the error(s)) based on standard IEEE definitions. .
Lanubile, et al. described an error abstraction process
for analyzing group of defects to determine their
underlying cause. This information is then used to
locate additional related defects. The process is heavily
reliant on the creativity of developers to analyze and
abstract errors and does not provide support for those
activities [6]. Research in this paper builds on that
work by providing developers a method for identifying
requirement errors.

Another unique aspect of this work is the realization
that human cognition research has focused on
understanding human errors in a general sense for
many years. Research into human errors needs to be
integrated into the software quality process.

To understand the types of errors that software
developers make when creating requirements, the
systematic literature review included literature from
both the software engineering and cognitive
psychology domains. The results from this extensive
literature search led to the development of a detailed
taxonomy of requirement errors. The taxonomy
quantifies the requirement error abstraction process by
providing a list of error types for developers to focus
on. This taxonomy is summarized in Section 2, with a
full description already published [11, 13].

We conducted an initial study of this approach in a
controlled experiment setting. The initial results were
encouraging; however there were some unaddressed

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.14

71

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.14

71

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.14

71

validity threats that motivated a replication of that
study with a different experimental design.

Section 3 discusses the details of the previous study,
the important results achieved, and the threats that
motivated this study. Section 4 describes the
experimental design. Section 5 describes the data
analysis and results. Section 6 discusses the threats to
validity. Section 7 talks about the relevance of the
results. Section 8 compares the results of the
replication to those from the first study. Section 9
contains the conclusions and future work.

2. Error Abstraction and Classification
Process

The first step in the proposed approach is the error
abstraction process. This step provides guidance to
help developers analyze related faults and determine
the underlying error(s). This process is similar to that
introduced by Lanubile, et al. Understanding the errors
that occurred during requirements development can
help inspectors locate additional faults, related to those
errors, in the requirements document.

After the error abstraction, the errors are classified
into a requirement error taxonomy (RET). Because the
error abstraction step is dependent on the ability of the
inspectors to identify errors, it is likely that not all
errors will be identified. The requirement error
taxonomy provides developers with a list of the types
of errors that may be present and focuses inspectors on
related faults.

Errors are grouped into three major types: People
Errors, Process Errors, and Documentation Errors.
People Errors are errors caused by the individual
fallibilities of the people involved in the development
process; Process Errors are errors caused by selection
of an inappropriate requirement engineering process;
and Documentation Errors are caused by mistakes in
organizing and specifying the requirements. Each of
these high-level error types are composed of a set of
more detailed error classes as shown in Figure 1. An
example of a people error and the resulting fault is:

Error: An important stakeholder (e.g., bank
manager in ATM system) was not involved while
gathering requirements
Fault: Some functionality (e.g., handling multiple
ATM cars simultaneously) was omitted. Similarly,
different errors and faults are described for people,
process, and documentation errors.

3. Background
The study described in this paper was motivated by

the results of an earlier study. This section describes
that study, and threats that motivated the replication.
The original study evaluated the process described in

Section 2 with a repeated factorial experiment design.
The study consisted of sixteen senior software
engineering students developing a real requirements
document through interaction with clients. There were
two teams, each developing a different system. After
developing the requirements document, the subjects
inspected the document using a fault checklist. Next,
they were trained in the error abstraction process to use
on those faults. After determining the errors, the
subjects were trained on the classifying errors using the
requirement error taxonomy. This error information
was then used to reinspect the requirements document
to locate additional faults.

The data analysis included comparison of the
increase in defects found by each subject from first
inspection (using fault checklist) to second inspection
(using the error abstraction process). All analysis was
done within the teams (i.e. there were no comparison
between the teams). The results suggested that the error
abstraction process provides a significant increase in
number of faults, and that requirement error taxonomy
was useful, well understood, and modular. Also People
Errors were identified as the major causes of faults.
There was a strong contribution from human cognition
research. Finally, other independent variables showed
an effect on the performance of subjects. Complete
details about the study and its results have been
published [11, 12].

A major validity threat in the original study was the
lack of a control group. It is possible that some of the
performance increase when using the error abstraction
process could have been caused simply by the fact that
the subjects were inspecting the document a second
time. This threat motivated the need to perform a non-
equivalent control group study to determine whether
the increase in fault detection was due to the error
abstraction process rather than to the reinspection.

People Errors

1. Communication
2. Participation
3. Domain Knowledge
4. Understanding Specific
 Application
5. Process Execution
6. Other human cognition

Process Errors

1. Inadequate method of
achieving goal/objective
2. Management
3. Elicitation
4. Analysis
5. Traceability

Documentation Errors

1. Organization
2. No Standard Usage
3. Specification

 Requirement Errors

Figure 1. Requirement Error Taxonomy [12]

727272

4. Experimental Design
To address the threat to validity described in

Section 3, the major goal of this study is to understand
whether the cause of additional faults found during a
reinspection is the error abstraction and classification
process or whether it is simply the reinspection
process. The design of this experiment is a non-
equivalent pretest posttest control group quasi-
experiment design consisting of a control group and an
experimental group. The details of the study are
provided in the remainder of this section.

4.1 Methodology
This study was a replication of the original study

described in Section 3 (with the addition of a control
group). To enable the results of the two studies to be
compared, the same hypotheses were used.

4.1.1 Hypotheses
Hypothesis 1: The error abstraction and classification
process improves the effectiveness (number of faults)
and efficiency (faults per hour) for teams and for
individuals.
Hypothesis 2: The requirement error taxonomy is
useful for improving software quality.
Hypothesis 3: The requirement error taxonomy
provides important insights into the requirement phase
of software development process.
Hypothesis 4: Research from the fields of human
cognition, and psychology lead to additional faults.
Hypothesis 5: Individual performance during the error
abstraction and classification process depends on a set
of independent variables.

4.1.2 Variables

Independent Variables
1. Process conformance – measures how closely

subjects follow the error abstraction, classification,
and re-inspection processes.

2. The pre-test – measures the performance of
subjects during an in-class exercise.

3. The training procedures (training 1, 2 and 3) –
measure the perceived usefulness of the training
by each subject.

4. Effort –amount of time spent during each phase of
the error abstraction, classification, and re-
inspection.

5. Difficulty level – degree of difficulty faced by the
subjects when performing the experimental tasks.

Dependent Variables
1. Effectiveness is the number of faults found by

each subject.

2. Efficiency is the number of faults found by each
subject per hour.

4.1.3 Subjects. Eighteen computer science graduate
students participated in this study. The subjects were
drawn from two full level graduate courses: Software
Verification and Validation (V&V) and Empirical
Software Engineering (ESE). The Software
Verification and Validation course focused on various
quality improvement approaches with a special focus
on software inspections. The primary goal of the
Empirical Software Engineering course was to teach
the concepts related to the design of empirical studies
and data analysis.

4.1.4 Artifacts. The software requirement specification
used in the study was the Data Warehouse Functional
requirements document produced by the Naval
Oceanographic Office. The subjects in this study were
not involved in the development of the requirements
document nor did they have access to any of the people
who were involved in its development.

4.2 Experimental Procedure
To evaluate the hypotheses posed in Section 4.1.1,

the study was designed to contain a control group
(Section 4.2.1) and an experimental group (Section
4.2.2). Figure 2 gives an overview of the procedure
followed. Table 1 indicates the timeline. The groups
were constructed by using the students in the V&V
course as the control group and the ESE course as the
experimental group. Of the 18 subjects, four were
enrolled in both the courses. To balance the groups,
these four subjects were allocated to one of the groups
based on their experiences. (Those four subjects were
not aware of what was occurring in the other group).
Each started with nine subjects. However, one subject
from experimental group opted out of the experiment
reducing it to eight subjects.

To prevent any bias in favor of the error abstraction
and classification process, the V&V course was chosen
as the control group because it was already focused on
the topic of software quality improvement and those
students would likely be more motivated to perform
well during the study.

4.2.1 Control Group. The procedure followed by the
control group consisted of the following steps:
o Training 1 – Fault checklist Technique: During

this 50 minutes session, the subjects were given
description of fault checklist and fault classes.
Subjects were taught how to use it on an SRS
document to locate faults and how to record faults.
The fault checklist technique used in this
experiment has been used in empirical studies for
comparing detection methods for inspections [10].

737373

o Step 1 - Inspecting SRS for Faults: Using the
information from Training 1, each subject
inspected the requirements using a fault checklist.
This step produced 9 individual fault lists (one per
subject).

o Training 2: Re-inspection of SRS: During this 20-
minute session, subjects were informed that
additional faults remained in the document and
motivated to re-inspect it to find the remaining
faults missed during the first inspection.

o Step 2- Re-inspecting SRS: Using the same fault
checklist as for Step 1, each subject re-inspected
the requirements document. These faults were
recorded in a new fault list. This step produced 9
new fault lists (one per subject).

o Post-study Questionnaire: The subjects were given
an opportunity to provide feedback performing the
inspection with the fault checklist.

4.2.2 Experimental Group. The following procedure
was used by members of the experimental group:
o Training 1 – Fault checklist Technique: Same as

for the Control Group.
o Step 1 – Inspecting SRS for faults: Same as for the

control group. This step produced eight individual
fault lists (one per subject).

o Training 2 – Error Abstraction: During this 40-
minute session, the subjects were trained on the

error abstraction process. They were also
instructed on how to use the error-fault form. A
detailed description of the error abstraction
training has already been published [11].

o Step 2 – Abstraction of Errors: The subjects used
the knowledge from Training 2 to extract the
errors from the faults on their individual fault lists.
These errors were documented in an Error-Fault
List. The output of this step was 8 individual error-
fault lists (one per subject).

o Training 3 – Requirement Error Classification:
This 90 minute session focused on the requirement
error taxonomy and its use. The taxonomy was
explained in detail. The students were taught how
to classify errors and how to use error information
to reinspect the requirements document. The
students were then given a description of an
example system and asked to classify 12 errors
using the taxonomy. The students’ classifications
of these errors provide an idea of how well they
understood the classification scheme. To combat a
potential validity threat of learning, two error lists
were prepared (A and B) with the same set of
errors in different orders. Half the students
received List A and half received List B.

o Step 3 – Classification of Errors: Using their
individual error-fault lists from Step 2 the subjects
abstracted and classified errors. While doing this

Experimental Group

SRS First Training

1. First Inspection

Fault List

Second Training

2. Error Abstraction

Error Fault List
Third Training

3. Error Classification

Error Class List

4. Re-inspection

New Error Fault List

Survey

SRS First Training

1. First Inspection

Fault List

Second Training

4. Re-inspection

New Error Fault List

Survey

Control Group

 Experiment steps

 Output list Training steps inputs to steps outputs link steps

Figure 2. Experimental Procedure

Second Training

747474

classification, the subjects also recorded any
additional errors they discovered while using the
error taxonomy. The output of this step was 8
individual error-class lists (one per subject).

o Step 4 – Locate additional faults: The subjects
used the information about errors gathered during
Step 3 to reinspect the requirements document to
locate additional faults. This step is similar to Step
2 for the Control Group except that the
experimental group had performed the error
abstraction step. The output of this step was 8
individual new error-fault lists (one per subject).

o Post-study Follow-up: The subjects were given a
questionnaire to provide feedback about the error
abstraction process and the requirement error
taxonomy. At the conclusion of the study, an in-
class discussion was held with students from both
groups to help the researchers (and subjects) better
understand the results.

5. Analysis and Results
This section provides an analysis of the data

collected during the study. This section is organized
around the hypotheses presented in Section 4.1.1. An
alpha value of 0.05 was selected for judging the
significance of results.

5.1 Fault Detection Effectiveness and
Efficiency (H1)

The effectiveness of the experimental and control
groups were compared on the first inspection, the
second inspection, and overall using an independent
samples t-test. During the first inspection, the average
effectiveness for the subjects was similar in both
groups (experimental group – 22 faults; control group -
18 faults). Conversely, during the second inspection,
the experimental group was significantly more
effective than the control group finding an average of
17 faults compared to an average of 3 faults (p= .002).

Considering the overall effectiveness (inspection 1 plus
inspection 2), the experimental group was also
significantly more effective than the control group
finding an average of 39 faults compared to an average
of 21 faults found for the control group (p= 0.044).
These results are shown in Figure 3. In addition, the
percentage increase in the number of faults was
significantly higher for experimental group [76%] than
the control group [17%] (p= 0.016). To reduce the
error of getting a significant result by chance while
doing the multiple tests, the Bonferroni correction was
applied to get an alpha value of 0.013 (0.05/4) [9].
Analysis of the results with respect to the corrected
alpha value indicates that the effectiveness when using
the error abstraction and classification process is
significantly higher than when simply performing two
inspections of same document using fault checklist.

When examining the results for efficiency, there
was less difference between the experimental and
control groups. Three efficiency values for inspectors
in both groups were computed: 1) during the first
inspection alone (number of faults found at first
inspection divided by time); 2) during the second
inspection alone (number of new faults found divided
by time); and 3) overall (total faults found at first and
second inspection divided by the time spent during
both inspections). There was not a significant
difference in the efficiency for either the first
inspection alone, the second inspection alone or
overall. Even though the results were not statistically
significant, the experimental group was more efficient
on the second inspection and overall.

The lack of significant difference in efficiency
seems to indicate that increased effort by the
experimental group could be the cause of the increase
in effectiveness. To analyze this potential factor, an
analysis of covariance was performed. The results

Table 1. Timeline

Experimental Control Time spent

Training 1 Training1

First Inspection First
Inspection

One week

Training2 Training2

Error Abstraction

Training3

Second Inspection

Second
Inspection

One week

Mean Fault Density

0

5

10

15

20

25

30

35

40

45

Experimental Control

Groups

N
um

be
r o

f F
au

lts

First inspection Second Inspection Whole inspection
Figure 3. Comparison of Average Number of

Faults for Groups

757575

showed that the time spent did not have a significant
effect on the effectiveness of the two groups.

5.2 Usefulness of the Requirement Error
Taxonomy (H2)

The requirement error taxonomy was evaluated
using feedback from the subjects in experiment group
on ten essential attributes: simplicity,
understandability, usability, intuitiveness,
orthogonality, usefulness, comprehensiveness,
uniformity across products, adequacy of error classes,
and ease of classifying errors. Each subject rated the
attributes on a 5-point Likert scale (0 – Very Low, 1 –
Low, 2- Medium, 3- High, or 4 – Very High).

A non-parametric binomial test was performed for
each attribute to test whether its mean was significantly
greater than 2 (the mid-point of the scale). The result
was significant (p= 0.08) for the following attributes:
usefulness, understandability, comprehensiveness,
uniformity across products, adequacy of error classes,
and ease of classifying errors. For these attributes, all
subjects provided a rating of high or very high. For the
intuitiveness attribute, seven subjects rated it as high or
very high and one subject rated as moderate (p=
0.070). For the usability and orthogonality attributes,
six subjects rated them as high or very high and two
subjects rated them as moderate (p= 0.289). Therefore,
the requirement error taxonomy was viewed favorably
overall.

5.3 Insight Provided (H3)
The three high-level error types and fourteen

detailed error classes (Figure 1) were analyzed to
determine whether any of them were a major source of
the errors and faults. Also, the major causes of
redundant, time consuming, multiple, important and
severe faults were analyzed. In each of these analyses,
errors and faults were analyzed separately to determine
if the effects were different.

5.3.1 Error Types vs. Error & Fault Density. Table
2 shows the distribution of errors among the three
types. This information was gathered from the
characterization of the errors on the error-class list
provided by the subjects in the experimental group.
People errors were the most common type of error. The
p value from a chi-square test confirms that the three
error types made significantly different contributions to
the overall total (p = 0.052).

Table 2 also shows the distribution of the faults
based on the type of error that caused the fault. This
information was gathered from the error-class lists,
error- fault list, and new error-fault list for the subjects
in the experimental group. While people errors caused
the highest percentage of errors, documentation errors

actually led to more defects. Again, the results from a
chi-square test confirms that different error types made
significantly different contributions to the number of
faults (p = 0.002).

5.3.2 Major Causes of Redundant, Multiple, Time-
Consuming, severe and important Faults. To better
understand the impacts of the errors, they were
analyzed in terms of the number of redundant,
multiple, time consuming, severe, and important faults
they caused. Because the subjects from the experiment
group were the only ones who used the Requirement
Error Taxonomy, on their data was used for this
analysis. For each of these variables, a chi-square test
was conducted to determine if the distribution of errors
was significantly different from uniform. Table 3
shows the percentage contribution of error types to
each variable along with the p-value from chi square
test. The remainder of this section explains each row.

 Redundant faults are faults that appear on the fault
list of more than one subject. The data for this analysis
was obtained at Steps 1 and 4 to identify redundant
faults and the responsible error type. Time-consuming
faults are faults that took longer than the average time
(12 minutes) to be located. Errors that cause multiple
faults are errors that have more than one fault
abstracted to them. In addition, each subject classified
the severity and importance of the faults found during
first and second inspection. The importance attribute
had five levels from zero (not important) to four
(highly important). The severity attribute had four
levels from zero (not severe) to three (will cause
failure). For each of these variables, People errors

Table 3. Insights Provided by Requirement
Error Taxonomy

Error
Types

People Process Docume
ntation

p-
value

Redundant
faults 52% 18% 30% .004

Time-
consuming

faults
60% 13% 27% .004

Multiple
faults 44% 30% 26% .002

Important
faults 62% 22% 16% <

.001
Severe
faults 53% 28% 19% <

.001

Table 2. Contribution of Error Types

Variable People Process Documentation
% Faults 41% 25% 34%
% Errors 35% 19% 46%

767676

caused significantly more faults than the other error
types (the p-values appear in Table 3).

Another important insight was whether the error
types were responsible for particular classes) of faults
or whether they led to all types of faults. A fault was
classified into one of the following fault classes:
General (G), Missing functionality (MF), Missing
performance (MP), Missing interface (MI), Missing
environment (ME), Ambiguous information (AI),
Inconsistent information (II), Incorrect or extra
functionality (IF), Wrong section (WS), and Other
faults (O). Figure 4 shows the different types of faults
that could be traced back to errors in each type. Each
error class led to all types of faults. In addition, it
appears that People errors most commonly led to faults
of ambiguity while Process errors led to faults of
ambiguity and missing functionality.

5.4 Contribution of Human Cognition to Fault
Density (H4)

One of the major contributions of the requirement
error taxonomy was the integration of research from
human cognition with research from software
engineering. In order to understand whether the human
cognition research made a meaningful contribution; the
percentage of errors (from experiment group) classified
into error classes related to human cognition research
were analyzed. The types of errors that were related to
human cognition were discussed in the previous study
[12]. The results shown in Figure 5 indicate that each
subject found errors related to human cognition. This
result implies that the use of research from human
cognition made an important contribution to the
requirement error taxonomy.

5.5 Effects of Other Variables (H5)
This section provides analysis of the impact of the

remaining independent variables on the dependent

variables. The independent variables include: process
conformance, pre-test performance, usefulness of
training, amount of effort, and difficulty level. The
dependent variables include: effectiveness and
efficiency. Linear regression tests were performed to
analyze the significance of the correlations between the
independent and dependent variable as reflected in the
p-values.

5.5.1 Process Conformance vs. Effectiveness. Each
subject in the experimental group rated their process
conformance from one to five on a 5-point Likert scale
at four different activities (Step 1, 2, 3 and 4 in Figure
2). The mean value of these ratings was used as the
overall process conformance value. The results in
Figure 6 show that increased process conformance led
to a higher number of defects found. This relationship
was significant (p = 0.041).

5.5.2 Effort vs. Effectiveness. Figure 7 shows that the
overall effort expended (in hours) was correlated with
the number of faults found. This result was significant
(p=0.044).

5.5.3 Performance on Pre-test vs. Effectiveness.
Finally, the number of errors correctly classified during

Error Types vs. Fault Classes

0

10

20

30

40

50

60

G MF MP MI ME AI II IF WS O

Fault Classes

E
rr

or
 D

en
si

ty

People Process Documentation

Figure 5. Cause of Fault Classes

Human Errors vs. Fault Density

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 Total

Subjects and Group

E
rr

or
 D

en
si

ty

Figure 4. Contribution of Human Research

Figure 6. Process Conformance vs.

Effectiveness

777777

the pre-test was analyzed to determine its affect on the
number of faults detected. The goal of this analysis
was to understand whether performance on a pre-test
could be an accurate predictor of performance on a real
project. Figure 8 shows that there was a significant
positive relationship between these two variables (p =
.032). This result indicates that the practice run is a
good predictor of performance.

6. Threats to Validity
In this study, there were some threats to validity that

were addressed. In order to avoid a learning effect
during the pre-test, the order of the errors being
classified was randomized. In addition, to reduce the
threat to external validity of using a toy requirements
document, the subjects used a real requirements
specification document. Finally, the lack of a control
group in previous study was addressed by modifying
design to include a control group.

However, there were some threats to validity that
were not addressed by the experimental design. While
the students were given a real requirements document,
there were still some other threats to external validity.

The study focused on students in a classroom setting
who are likely to have different experience and time
pressures than would be true of professionals in a real
environment. A selection threat exists because the
subjects were allocated to groups (experimental and
control) based on the course they were enrolled in
rather than randomly. Realizing that this threat was
present, the course which was most closely related to
the subject and therefore likely to perform better
(Verification and Validation) was chosen to be the
control group. This selection was made so that if any
bias was present, it would in favor of the control group
and not the proposed approach. The last threat that was
unaddressed was maturation. The subjects in control
group performed two inspections on the same
requirements document using the same technique.
While this arrangement provided the fairest
comparison to the experimental group, it is likely that
subjects were less motivated during the second
inspection because they believed they had already
found all of the problems.

7. Discussion of Results
In this section, the implications of the results from

Section 5 are discussed for each of the original
hypotheses posed in Section 4.1.1.

7.1 Hypothesis 1
The error abstraction process improves the
effectiveness and efficiency for teams and for
individuals.

In terms of effectiveness, the results in Section 5.1
reveal that subjects in both the control group and the
experimental group performed similarly during the first
inspection. However, during the second inspection, the
subjects using the error abstraction process were
significantly more effective than the subjects who did
not use the error abstraction process. In addition, the
subjects that used the error abstraction process were
significantly more effective overall than the subjects
who did not use the error abstraction process.

In terms of efficiency, the subjects using the error
abstraction process were more efficient (more faults
per hour) than the subjects who did not use the error
abstraction process, but this result was not statistically
significantly different. Combining the results for
effectiveness and efficiency shows that the use of the
error abstraction process led subjects to find more
defects and did not hurt their efficiency. Overall, it is a
worthwhile use of effort considering the significant
increase in the number of faults.

Figure 8. Performance vs. Effectiveness

Figure 7. Effort Spent vs. Effectiveness

787878

7.2 Hypothesis 2
The requirement error taxonomy is useful for

improving software quality.

The results from Section 5.2 showed that in general
the subjects rated the requirement error taxonomy
favorably on some but not all of the attributes. Post-
experiment, interviews, and discussion with the
subjects from the experimental group revealed some
insight into this result. The subjects indicated that
abstracting and classifying errors was difficult because
they were not involved in the development of the
requirements document nor did they have access to
anyone who was involved in the development. This is
an area that must be addressed in future studies.

7.3 Hypothesis 3
The requirement error taxonomy provides
important insights into the requirement phase of
software development process.

The results from Section 5.3 showed that while the
people errors were the largest source of errors, the
documentation errors caused more faults. In addition,
people errors are the major source of redundant faults,
multiple faults, time-consuming faults, important
faults, and severe faults. Therefore, people errors are
an important and major cause of faults. The errors in
the requirements error taxonomy led to many types of
faults. Also, people errors were the primary cause of
ambiguous information faults and process errors were
primary cause of missing functionality faults, whereas
the documentation errors were more evenly distributed
among the fault types. These results provide
confidence that the error classes in the requirement
error taxonomy are valid and provide a good coverage
of the requirements error space.

7.4 Hypothesis 4
 The contribution of research from human
cognition, psychology, and other fields helps
locate more faults.

 The results from Section 5.4 indicated that all the
subjects in the experiment group found faults related to
errors derived from human cognition research. The
result supports the hypothesis and provides confidence
that using research from fields like human cognition
made a beneficial contribution to requirement error
taxonomy. This result also establishes the validity of
focusing on human errors in requirement phase of
software process.

7.5 Hypothesis 5
Individual performance during the error
abstraction process depends on various
independent variables including: process
conformance, performance on pre-test, usefulness
of training procedure, effort applied, and difficulty
level.

The results from Section 5.5 showed that process
conformance, pre-test performance, and overall effort
affect the number of faults detected by subjects. These
results support the hypothesis and allow the following
conclusions to be drawn: 1) to increase the number of
faults detected, subjects must follow the process during
error abstraction, classification and reinspection; 2) an
increase in effort spent is likely to lead to an increase
in the number of faults detected; 3) a subject’s
performance on a pre-test can be used to predict their
effectiveness using the error abstraction process.

8. Comparison of Results
This section revisits the original hypotheses from

Section 4.1.1 to compare the results from this study
with those obtained during the previous study [12].
The results are compared around the standard set of
hypotheses for both experiments. Results from the
original study (study 1) and the new study (study 2) are
summarized for each hypothesis in Table 4. In general,
the results from the replication supported the results
from the original study.

The error abstraction and classification process
improved effectiveness in both cases, whereas the
efficiency was improved in the replication only.
Results from both studies indicate that it is easy to
classify errors using the requirement error taxonomy.
In both studies, People errors were an important source
of problems. Furthermore, human cognition research
could make a meaningful contribution to the analysis
of requirement errors. Unlike the previous study, there
was no significant relationship between effort and
efficiency in the replication. Finally, in both studies,
effectiveness depends on performance on the pre-test,
process conformance and training.

9. Conclusion
Based on the results of the study, both the error

abstraction process and the requirements error
taxonomy are beneficial to developers who use them.
The feedback provided by the subjects will be used to
further refine and improve both processes to make
them better for future studies. We plan to conduct more
studies to empirically evaluate the error abstraction
process and continue to refine both the error
abstraction process and the requirement error

797979

taxonomy based on the feedback from subjects. In
future, we plan to replicate this study and other studies
in different settings including an industrial setting. Our
future work also includes creating a Design Error
Classification Taxonomy using the same approach.
Fault detection techniques will then be constructed
based on the error taxonomies.

10. Acknowledgements
We thank the students in Software Verification &

Validation and Empirical Software Engineering
courses at Mississippi State University for participating
in this experiment. We acknowledge the Empirical
Software Engineering group at Mississippi State
University for providing useful feedback on the
research and this paper. This work was supported in
part by the Office of Research at Mississippi State
University.

11. References
[1] Boehm, B., and Basili, V.R. "Software Defect Reduction
Top 10 List," IEEE Computer, 34 (1):135-137, January 2001.

[2] Chaar, J., Halliday, M., Bhandari, I., and Chillarege, R.,
"In- Process Evaluation for Software Inspection and Test,"
IEEE Transactions on Software Engineering, 19(11):1055-
1070, November 1993.

[3] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M.,
Moebus, D., Ray, B., and Wong, M.Y., “Orthogonal Defect
Classification - A Concept for In-Process Measurements,"
IEEE Transactions on Software Engineering, 18(11):943-
956, November 1992.

[4] Damele, G., Bazzana, G., Andreis, F., and Aquilio, S.,
“Process Improvement through Root Cause Analysis,” In
Proceedings of the 3rd International Conference on Achieving
Quality in Software, Florence, 1996, p.35-47.

[5] Florac, W. A., “Software Quality Measurement: A
Framework for Counting Problems and Defect,” Technical
Report, Carnegie Mellon Software Engineering Institute,
Pittsburg, PA., CMU/SEI-92-TR-22, 1992.

[6] Lanubile, F., Shull, F., Basili, V.R., “Experimenting with
Error Abstraction in Requirements Documents,” In
Proceedings of 5th International symposium on software
metrics, 1998, Bethesda, MD, USA:IEEE Computer Society.

[7] Lezak, M., Perry, E.D., Stoll, D., “A Case Study in Root
Cause Defect Analysis,” In Proceedings of the 22nd
International Conference on Software Engineering, 2000,
Limerick, Ireland.

[8] Software Engineering Laboratory: Software Measurement
Guidebook, 1994, NASA/GSFC Software Engineering
Laboratory, Technical Report SEL-94-002, 1994.

[9] Miller, R.G., “Simultaneous Statistical Inference,” 2nd
Edition, Springer Verlag, New York, pp. 6-8, 1981.

[10] Porter, A.A., Votta, L.G., Basili, V.R., “Comparing
Detection Methods for Software Requirements Inspections:
A Replicated Experiment,” IEEE Transactions on Software
Engineering, 1995, 21(6): 563-575.

[11] Walia, G.S., “Empirical Validation of Requirement
Error Abstraction and Classification: A Multidisciplinary
Approach,” M.S Thesis, Mississippi State University, MS,
2006.

[12] Walia, G.S., Carver, J., Philip, T., “Requirement Error
Abstraction and Classification: An Empirical Study,” In
Proceedings of the 5th International Symposium on Empirical
Software Engineering, Rio de Janeiro, 2006, pp. 336-345.

[13] Walia, G.S., Carver, J., “Development of Requirement
Error Taxonomy as a Quality Improvement Approach: A
Systematic Literature Review,” Department of Computer
Science and Engineering, Technical Report, MSU-070404,
Mississippi State University, 2007.

Table 4. Comparison of Results from Two
Experiments

H# Study 1: Factorial
Design experiment

Study 2: Control
Group Study

1 75% and 154%
increase in faults when
using the error
abstraction and
classification process
but lowered the
efficiency.

The error abstraction
and classification
process significantly
improved the
effectiveness, and
improved efficiency
(not significant)

2 The requirement error
taxonomy was viewed
favorably: it was easy
to use and classify
errors, understandable
and well modularized.

The requirement error
taxonomy was viewed
favorably: it was well
understood, useful, and
uniform across
products.

3 People errors are the
major source of errors
and faults.

People errors are major
source of errors and
faults.

4 There was a significant
contribution from
human cognition

There was a significant
contribution from
human cognition

5 Performance on pre-
test, process
conformance, and
training affects
effectiveness; and
overall effort affect the
efficiency.

Performance on pre-
test, process
conformance and
overall effort affect the
effectiveness.

808080

