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Abstract 
 

This paper is the second in a series of empirical 
studies about requirement error abstraction and 
classification as a quality improvement approach. The 
Requirement error abstraction and classification 
method supports the developers’ effort in efficiently 
identifying the root cause of requirements faults. By 
uncovering the source of faults, the developers can 
locate and remove additional related faults that may 
have been overlooked, thereby improving the quality 
and reliability of the resulting system. This study is a 
replication of an earlier study that adds a control 
group to address a major validity threat. The approach 
studied includes a process for abstracting errors from 
faults and provides a requirement error taxonomy for 
organizing those errors. A unique aspect of this work is 
the use of research from human cognition to improve 
the process. The results of the replication are 
presented and compared with the results from the 
original study. Overall, the results from this study 
indicate that the error abstraction and classification 
approach improves the effectiveness and efficiency of 
inspectors. The requirement error taxonomy is viewed 
favorably and provides useful insights into the source 
of faults. In addition, human cognition research is 
shown to be an important factor that affects the 
performance of the inspectors. This study also provides 
additional evidence to motivate further research.         

  

1. Introduction 
Software quality is a major issue for software 

engineers. Various quality improvement approaches 
have focused on faults as an indication of problems 
early in the development process. To accomplish this 
goal, these approaches provide guidance to developers 
on the identification of faults [2, 3, 4, 5, 7, 8]. 
However, even with these approaches, the desired level 
of quality is not always achieved because identification 
of faults can not always reveal all the problems. There 
is a need to understand the actual underlying cause of 

the defects. To address this need, the research 
described in this paper goes a step back from faults to 
focus on the underlying cause of faults (i.e., errors) to 
improve software quality.  

A detailed systematic literature review identified 
several methods that use the sources of faults as a 
means to improve quality. In analyzing the strengths 
and weaknesses of these methods, it became clear that 
most of them do not provide developers with an easy 
mechanism to use this information in practice [13].  

Lanubile et al. provided evidence of the usefulness 
of error information in requirements inspection. They 
differentiated between error (a mistake in the human 
thought process) and fault (a concrete manifestation of 
the error(s)) based on standard IEEE definitions. . 
Lanubile, et al. described an error abstraction process 
for analyzing group of defects to determine their 
underlying cause. This information is then used to 
locate additional related defects. The process is heavily 
reliant on the creativity of developers to analyze and 
abstract errors and does not provide support for those 
activities [6]. Research in this paper builds on that 
work by providing developers a method for identifying 
requirement errors.  

Another unique aspect of this work is the realization 
that human cognition research has focused on 
understanding human errors in a general sense for 
many years. Research into human errors needs to be 
integrated into the software quality process.  

To understand the types of errors that software 
developers make when creating requirements, the 
systematic literature review included literature from 
both the software engineering and cognitive 
psychology domains. The results from this extensive 
literature search led to the development of a detailed 
taxonomy of requirement errors. The taxonomy 
quantifies the requirement error abstraction process by 
providing a list of error types for developers to focus 
on. This taxonomy is summarized in Section 2, with a 
full description already published [11, 13].  

We conducted an initial study of this approach in a 
controlled experiment setting. The initial results were 
encouraging; however there were some unaddressed 
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validity threats that motivated a replication of that 
study with a different experimental design.  

Section 3 discusses the details of the previous study, 
the important results achieved, and the threats that 
motivated this study. Section 4 describes the 
experimental design. Section 5 describes the data 
analysis and results. Section 6 discusses the threats to 
validity. Section 7 talks about the relevance of the 
results. Section 8 compares the results of the 
replication to those from the first study. Section 9 
contains the conclusions and future work. 

2. Error Abstraction and Classification 
Process 

The first step in the proposed approach is the error 
abstraction process. This step provides guidance to 
help developers analyze related faults and determine 
the underlying error(s). This process is similar to that 
introduced by Lanubile, et al. Understanding the errors 
that occurred during requirements development can 
help inspectors locate additional faults, related to those 
errors, in the requirements document. 

After the error abstraction, the errors are classified 
into a requirement error taxonomy (RET). Because the 
error abstraction step is dependent on the ability of the 
inspectors to identify errors, it is likely that not all 
errors will be identified. The requirement error 
taxonomy provides developers with a list of the types 
of errors that may be present and focuses inspectors on 
related faults.  

Errors are grouped into three major types: People 
Errors, Process Errors, and Documentation Errors. 
People Errors are errors caused by the individual 
fallibilities of the people involved in the development 
process; Process Errors are errors caused by selection 
of an inappropriate requirement engineering process; 
and Documentation Errors are caused by mistakes in 
organizing and specifying the requirements. Each of 
these high-level error types are composed of a set of 
more detailed error classes as shown in Figure 1. An 
example of a people error and the resulting fault is: 

Error: An important stakeholder (e.g., bank 
manager in ATM system) was not involved while 
gathering requirements 
Fault: Some functionality (e.g., handling multiple 
ATM cars simultaneously) was omitted. Similarly, 
different errors and faults are described for people, 
process, and documentation errors. 

3. Background 
The study described in this paper was motivated by 

the results of an earlier study. This section describes 
that study, and threats that motivated the replication. 
The original study evaluated the process described in 

Section 2 with a repeated factorial experiment design. 
The study consisted of sixteen senior software 
engineering students developing a real requirements 
document through interaction with clients. There were 
two teams, each developing a different system. After 
developing the requirements document, the subjects 
inspected the document using a fault checklist. Next, 
they were trained in the error abstraction process to use 
on those faults. After determining the errors, the 
subjects were trained on the classifying errors using the 
requirement error taxonomy. This error information 
was then used to reinspect the requirements document 
to locate additional faults.  

The data analysis included comparison of the 
increase in defects found by each subject from first 
inspection (using fault checklist) to second inspection 
(using the error abstraction process). All analysis was 
done within the teams (i.e. there were no comparison 
between the teams). The results suggested that the error 
abstraction process provides a significant increase in 
number of faults, and that requirement error taxonomy 
was useful, well understood, and modular. Also People 
Errors were identified as the major causes of faults. 
There was a strong contribution from human cognition 
research. Finally, other independent variables showed 
an effect on the performance of subjects. Complete 
details about the study and its results have been 
published [11, 12].  

A major validity threat in the original study was the 
lack of a control group. It is possible that some of the 
performance increase when using the error abstraction 
process could have been caused simply by the fact that 
the subjects were inspecting the document a second 
time. This threat motivated the need to perform a non-
equivalent control group study to determine whether 
the increase in fault detection was due to the error 
abstraction process rather than to the reinspection. 

 

People Errors 
 
1. Communication 
2. Participation 
3. Domain Knowledge 
4. Understanding Specific 
    Application 
5. Process Execution 
6. Other human cognition 

Process Errors 
 
1. Inadequate method of 
achieving goal/objective 
2. Management 
3. Elicitation 
4. Analysis 
5. Traceability 

Documentation Errors 
 
1. Organization 
2. No Standard Usage 
3. Specification 

        Requirement Errors 

 
Figure 1. Requirement Error Taxonomy [12] 
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4. Experimental Design 
To address the threat to validity described in 

Section 3, the major goal of this study is to understand 
whether the cause of additional faults found during a 
reinspection is the error abstraction and classification 
process or whether it is simply the reinspection 
process. The design of this experiment is a non-
equivalent pretest posttest control group quasi-
experiment design consisting of a control group and an 
experimental group. The details of the study are 
provided in the remainder of this section. 

4.1 Methodology 
This study was a replication of the original study 

described in Section 3 (with the addition of a control 
group). To enable the results of the two studies to be 
compared, the same hypotheses were used. 

4.1.1 Hypotheses 
Hypothesis 1: The error abstraction and classification 
process improves the effectiveness (number of faults) 
and efficiency (faults per hour) for teams and for 
individuals. 
Hypothesis 2: The requirement error taxonomy is 
useful for improving software quality. 
Hypothesis 3: The requirement error taxonomy 
provides important insights into the requirement phase 
of software development process.  
Hypothesis 4: Research from the fields of human 
cognition, and psychology lead to additional faults. 
Hypothesis 5: Individual performance during the error 
abstraction and classification process depends on a set 
of independent variables. 
 

4.1.2 Variables 
 
Independent Variables 
1. Process conformance – measures how closely 

subjects follow the error abstraction, classification, 
and re-inspection processes. 

2. The pre-test – measures the performance of 
subjects during an in-class exercise.  

3. The training procedures (training 1, 2 and 3) –
measure the perceived usefulness of the training 
by each subject. 

4. Effort –amount of time spent during each phase of 
the error abstraction, classification, and re-
inspection.  

5. Difficulty level – degree of difficulty faced by the 
subjects when performing the experimental tasks. 

Dependent Variables 
1. Effectiveness is the number of faults found by 

each subject. 

2. Efficiency is the number of faults found by each 
subject per hour. 

4.1.3 Subjects. Eighteen computer science graduate 
students participated in this study. The subjects were 
drawn from two full level graduate courses: Software 
Verification and Validation (V&V) and Empirical 
Software Engineering (ESE). The Software 
Verification and Validation course focused on various 
quality improvement approaches with a special focus 
on software inspections. The primary goal of the 
Empirical Software Engineering course was to teach 
the concepts related to the design of empirical studies 
and data analysis. 

4.1.4 Artifacts. The software requirement specification 
used in the study was the Data Warehouse Functional 
requirements document produced by the Naval 
Oceanographic Office. The subjects in this study were 
not involved in the development of the requirements 
document nor did they have access to any of the people 
who were involved in its development. 

4.2 Experimental Procedure 
To evaluate the hypotheses posed in Section 4.1.1, 

the study was designed to contain a control group 
(Section 4.2.1) and an experimental group (Section 
4.2.2). Figure 2 gives an overview of the procedure 
followed. Table 1 indicates the timeline. The groups 
were constructed by using the students in the V&V 
course as the control group and the ESE course as the 
experimental group. Of the 18 subjects, four were 
enrolled in both the courses. To balance the groups, 
these four subjects were allocated to one of the groups 
based on their experiences. (Those four subjects were 
not aware of what was occurring in the other group). 
Each started with nine subjects. However, one subject 
from experimental group opted out of the experiment 
reducing it to eight subjects.  

To prevent any bias in favor of the error abstraction 
and classification process, the V&V course was chosen 
as the control group because it was already focused on 
the topic of software quality improvement and those 
students would likely be more motivated to perform 
well during the study. 

4.2.1 Control Group. The procedure followed by the 
control group consisted of the following steps: 
o Training 1 – Fault checklist Technique: During 

this 50 minutes session, the subjects were given 
description of fault checklist and fault classes. 
Subjects were taught how to use it on an SRS 
document to locate faults and how to record faults. 
The fault checklist technique used in this 
experiment has been used in empirical studies for 
comparing detection methods for inspections [10].  
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o Step 1 - Inspecting SRS for Faults: Using the 
information from Training 1, each subject 
inspected the requirements using a fault checklist. 
This step produced 9 individual fault lists (one per 
subject). 

o Training 2: Re-inspection of SRS: During this 20-
minute session, subjects were informed that 
additional faults remained in the document and 
motivated to re-inspect it to find the remaining 
faults missed during the first inspection.  

o Step 2- Re-inspecting SRS: Using the same fault 
checklist as for Step 1, each subject re-inspected 
the requirements document. These faults were 
recorded in a new fault list. This step produced 9 
new fault lists (one per subject).  

o Post-study Questionnaire: The subjects were given 
an opportunity to provide feedback performing the 
inspection with the fault checklist. 

4.2.2 Experimental Group. The following procedure 
was used by members of the experimental group:  
o Training 1 – Fault checklist Technique: Same as 

for the Control Group. 
o Step 1 – Inspecting SRS for faults: Same as for the 

control group. This step produced eight individual 
fault lists (one per subject).  

o Training 2 – Error Abstraction: During this 40-
minute session, the subjects were trained on the 

error abstraction process. They were also 
instructed on how to use the error-fault form. A 
detailed description of the error abstraction 
training has already been published [11]. 

o Step 2 – Abstraction of Errors: The subjects used 
the knowledge from Training 2 to extract the 
errors from the faults on their individual fault lists. 
These errors were documented in an Error-Fault 
List. The output of this step was 8 individual error-
fault lists (one per subject). 

o Training 3 – Requirement Error Classification: 
This 90 minute session focused on the requirement 
error taxonomy and its use. The taxonomy was 
explained in detail. The students were taught how 
to classify errors and how to use error information 
to reinspect the requirements document. The 
students were then given a description of an 
example system and asked to classify 12 errors 
using the taxonomy. The students’ classifications 
of these errors provide an idea of how well they 
understood the classification scheme. To combat a 
potential validity threat of learning, two error lists 
were prepared (A and B) with the same set of 
errors in different orders. Half the students 
received List A and half received List B.  

o Step 3 – Classification of Errors: Using their 
individual error-fault lists from Step 2 the subjects 
abstracted and classified errors. While doing this 

 
Experimental Group

SRS First Training 

1. First Inspection

Fault List 

Second Training 

2. Error Abstraction

Error Fault List
Third Training 

3. Error Classification

Error Class List 

4. Re-inspection

New Error Fault List 

Survey

SRS First Training 

1. First Inspection

Fault List

Second Training 

4. Re-inspection

New Error Fault List 

Survey

Control Group 

  
 

 Experiment steps  
 

 Output list  Training steps     inputs to steps       outputs        link steps 

 
Figure 2. Experimental Procedure 

Second Training 
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classification, the subjects also recorded any 
additional errors they discovered while using the 
error taxonomy. The output of this step was 8 
individual error-class lists (one per subject). 

o Step 4 – Locate additional faults: The subjects 
used the information about errors gathered during 
Step 3 to reinspect the requirements document to 
locate additional faults. This step is similar to Step 
2 for the Control Group except that the 
experimental group had performed the error 
abstraction step. The output of this step was 8 
individual new error-fault lists (one per subject).  

o Post-study Follow-up: The subjects were given a 
questionnaire to provide feedback about the error 
abstraction process and the requirement error 
taxonomy. At the conclusion of the study, an in-
class discussion was held with students from both 
groups to help the researchers (and subjects) better 
understand the results. 

5. Analysis and Results 
This section provides an analysis of the data 

collected during the study. This section is organized 
around the hypotheses presented in Section 4.1.1. An 
alpha value of 0.05 was selected for judging the 
significance of results. 

5.1 Fault Detection Effectiveness and 
Efficiency (H1) 

The effectiveness of the experimental and control 
groups were compared on the first inspection, the 
second inspection, and overall using an independent 
samples t-test. During the first inspection, the average 
effectiveness for the subjects was similar in both 
groups (experimental group – 22 faults; control group - 
18 faults). Conversely, during the second inspection, 
the experimental group was significantly more 
effective than the control group finding an average of 
17 faults compared to an average of 3 faults (p= .002). 

Considering the overall effectiveness (inspection 1 plus 
inspection 2), the experimental group was also 
significantly more effective than the control group 
finding an average of 39 faults compared to an average 
of 21 faults found for the control group (p= 0.044). 
These results are shown in Figure 3. In addition, the 
percentage increase in the number of faults was 
significantly higher for experimental group [76%] than 
the control group [17%] (p= 0.016). To reduce the 
error of getting a significant result by chance while 
doing the multiple tests, the Bonferroni correction was 
applied to get an alpha value of 0.013 (0.05/4) [9]. 
Analysis of the results with respect to the corrected 
alpha value indicates that the effectiveness when using 
the error abstraction and classification process is 
significantly higher than when simply performing two 
inspections of same document using fault checklist.  

When examining the results for efficiency, there 
was less difference between the experimental and 
control groups. Three efficiency values for inspectors 
in both groups were computed: 1) during the first 
inspection alone (number of faults found at first 
inspection divided by time); 2) during the second 
inspection alone (number of new faults found divided 
by time); and 3) overall (total faults found at first and 
second inspection divided by the time spent during 
both inspections). There was not a significant 
difference in the efficiency for either the first 
inspection alone, the second inspection alone or 
overall. Even though the results were not statistically 
significant, the experimental group was more efficient 
on the second inspection and overall. 

The lack of significant difference in efficiency 
seems to indicate that increased effort by the 
experimental group could be the cause of the increase 
in effectiveness. To analyze this potential factor, an 
analysis of covariance was performed. The results 

Table 1. Timeline 

Experimental Control Time spent 

Training 1 Training1 

First Inspection First 
Inspection 

One week 

Training2 Training2 

Error Abstraction 

Training3 

Second Inspection 

Second 
Inspection 

One week 

Mean Fault Density
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First inspection Second Inspection Whole inspection  
Figure 3. Comparison of Average Number of 

Faults for Groups 
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showed that the time spent did not have a significant 
effect on the effectiveness of the two groups.  

5.2 Usefulness of the Requirement Error 
Taxonomy (H2) 

The requirement error taxonomy was evaluated 
using feedback from the subjects in experiment group 
on ten essential attributes: simplicity, 
understandability, usability, intuitiveness, 
orthogonality, usefulness, comprehensiveness, 
uniformity across products, adequacy of error classes, 
and ease of classifying errors. Each subject rated the 
attributes on a 5-point Likert scale (0 – Very Low, 1 – 
Low, 2- Medium, 3- High, or 4 – Very High).  

A non-parametric binomial test was performed for 
each attribute to test whether its mean was significantly 
greater than 2 (the mid-point of the scale). The result 
was significant (p= 0.08) for the following attributes: 
usefulness, understandability, comprehensiveness, 
uniformity across products, adequacy of error classes, 
and ease of classifying errors. For these attributes, all 
subjects provided a rating of high or very high. For the 
intuitiveness attribute, seven subjects rated it as high or 
very high and one subject rated as moderate (p= 
0.070). For the usability and orthogonality attributes, 
six subjects rated them as high or very high and two 
subjects rated them as moderate (p= 0.289). Therefore, 
the requirement error taxonomy was viewed favorably 
overall. 

5.3 Insight Provided (H3) 
The three high-level error types and fourteen 

detailed error classes (Figure 1) were analyzed to 
determine whether any of them were a major source of 
the errors and faults. Also, the major causes of 
redundant, time consuming, multiple, important and 
severe faults were analyzed. In each of these analyses, 
errors and faults were analyzed separately to determine 
if the effects were different. 

5.3.1 Error Types vs. Error & Fault Density. Table 
2 shows the distribution of errors among the three 
types. This information was gathered from the 
characterization of the errors on the error-class list 
provided by the subjects in the experimental group. 
People errors were the most common type of error. The 
p value from a chi-square test confirms that the three 
error types made significantly different contributions to 
the overall total (p = 0.052). 

Table 2 also shows the distribution of the faults 
based on the type of error that caused the fault. This 
information was gathered from the error-class lists, 
error- fault list, and new error-fault list for the subjects 
in the experimental group. While people errors caused 
the highest percentage of errors, documentation errors 

actually led to more defects. Again, the results from a 
chi-square test confirms that different error types made 
significantly different contributions to the number of 
faults (p = 0.002). 

5.3.2 Major Causes of Redundant, Multiple, Time-
Consuming, severe and important Faults. To better 
understand the impacts of the errors, they were 
analyzed in terms of the number of redundant, 
multiple, time consuming, severe, and important faults 
they caused. Because the subjects from the experiment 
group were the only ones who used the Requirement 
Error Taxonomy, on their data was used for this 
analysis. For each of these variables, a chi-square test 
was conducted to determine if the distribution of errors 
was significantly different from uniform. Table 3 
shows the percentage contribution of error types to 
each variable along with the p-value from chi square 
test. The remainder of this section explains each row.  

 Redundant faults are faults that appear on the fault 
list of more than one subject. The data for this analysis 
was obtained at Steps 1 and 4 to identify redundant 
faults and the responsible error type. Time-consuming 
faults are faults that took longer than the average time 
(12 minutes) to be located. Errors that cause multiple 
faults are errors that have more than one fault 
abstracted to them. In addition, each subject classified 
the severity and importance of the faults found during 
first and second inspection. The importance attribute 
had five levels from zero (not important) to four 
(highly important). The severity attribute had four 
levels from zero (not severe) to three (will cause 
failure). For each of these variables, People errors 

Table 3. Insights Provided by Requirement 
Error Taxonomy 

Error 
Types 

People Process Docume
ntation 

p-
value 

Redundant 
faults 52% 18% 30% .004 

Time- 
consuming 

faults 
60% 13% 27% .004 

Multiple 
faults 44% 30% 26% .002 

Important 
faults 62% 22% 16% < 

.001 
Severe 
faults 53% 28% 19% < 

.001 

Table 2. Contribution of Error Types 

Variable People Process Documentation 
% Faults 41% 25% 34% 
% Errors 35% 19% 46% 
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caused significantly more faults than the other error 
types (the p-values appear in Table 3). 

Another important insight was whether the error 
types were responsible for particular classes) of faults 
or whether they led to all types of faults. A fault was 
classified into one of the following fault classes: 
General (G), Missing functionality (MF), Missing 
performance (MP), Missing interface (MI), Missing 
environment (ME), Ambiguous information (AI), 
Inconsistent information (II), Incorrect or extra 
functionality (IF), Wrong section (WS), and Other 
faults (O). Figure 4 shows the different types of faults 
that could be traced back to errors in each type. Each 
error class led to all types of faults. In addition, it 
appears that People errors most commonly led to faults 
of ambiguity while Process errors led to faults of 
ambiguity and missing functionality.   

5.4 Contribution of Human Cognition to Fault 
Density (H4) 

One of the major contributions of the requirement 
error taxonomy was the integration of research from 
human cognition with research from software 
engineering. In order to understand whether the human 
cognition research made a meaningful contribution; the 
percentage of errors (from experiment group) classified 
into error classes related to human cognition research 
were analyzed. The types of errors that were related to 
human cognition were discussed in the previous study 
[12]. The results shown in Figure 5 indicate that each 
subject found errors related to human cognition. This 
result implies that the use of research from human 
cognition made an important contribution to the 
requirement error taxonomy.  

5.5 Effects of Other Variables (H5) 
This section provides analysis of the impact of the 

remaining independent variables on the dependent 

variables. The independent variables include: process 
conformance, pre-test performance, usefulness of 
training, amount of effort, and difficulty level. The 
dependent variables include: effectiveness and 
efficiency. Linear regression tests were performed to 
analyze the significance of the correlations between the 
independent and dependent variable as reflected in the 
p-values. 

5.5.1 Process Conformance vs. Effectiveness. Each 
subject in the experimental group rated their process 
conformance from one to five on a 5-point Likert scale 
at four different activities (Step 1, 2, 3 and 4 in Figure 
2). The mean value of these ratings was used as the 
overall process conformance value. The results in 
Figure 6 show that increased process conformance led 
to a higher number of defects found. This relationship 
was significant (p = 0.041). 

5.5.2 Effort vs. Effectiveness. Figure 7 shows that the 
overall effort expended (in hours) was correlated with 
the number of faults found. This result was significant 
(p=0.044). 

5.5.3 Performance on Pre-test vs. Effectiveness. 
Finally, the number of errors correctly classified during 
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the pre-test was analyzed to determine its affect on the 
number of faults detected. The goal of this analysis 
was to understand whether performance on a pre-test 
could be an accurate predictor of performance on a real 
project. Figure 8 shows that there was a significant 
positive relationship between these two variables (p = 
.032). This result indicates that the practice run is a 
good predictor of performance. 

 

6. Threats to Validity 
In this study, there were some threats to validity that 

were addressed. In order to avoid a learning effect 
during the pre-test, the order of the errors being 
classified was randomized. In addition, to reduce the 
threat to external validity of using a toy requirements 
document, the subjects used a real requirements 
specification document. Finally, the lack of a control 
group in previous study was addressed by modifying 
design to include a control group.  

However, there were some threats to validity that 
were not addressed by the experimental design. While 
the students were given a real requirements document, 
there were still some other threats to external validity. 

The study focused on students in a classroom setting 
who are likely to have different experience and time 
pressures than would be true of professionals in a real 
environment. A selection threat exists because the 
subjects were allocated to groups (experimental and 
control) based on the course they were enrolled in 
rather than randomly. Realizing that this threat was 
present, the course which was most closely related to 
the subject and therefore likely to perform better 
(Verification and Validation) was chosen to be the 
control group. This selection was made so that if any 
bias was present, it would in favor of the control group 
and not the proposed approach. The last threat that was 
unaddressed was maturation. The subjects in control 
group performed two inspections on the same 
requirements document using the same technique. 
While this arrangement provided the fairest 
comparison to the experimental group, it is likely that 
subjects were less motivated during the second 
inspection because they believed they had already 
found all of the problems. 

7. Discussion of Results 
In this section, the implications of the results from 

Section 5 are discussed for each of the original 
hypotheses posed in Section 4.1.1. 

7.1 Hypothesis 1 
The error abstraction process improves the 
effectiveness and efficiency for teams and for 
individuals. 

In terms of effectiveness, the results in Section 5.1 
reveal that subjects in both the control group and the 
experimental group performed similarly during the first 
inspection. However, during the second inspection, the 
subjects using the error abstraction process were 
significantly more effective than the subjects who did 
not use the error abstraction process. In addition, the 
subjects that used the error abstraction process were 
significantly more effective overall than the subjects 
who did not use the error abstraction process. 

In terms of efficiency, the subjects using the error 
abstraction process were more efficient (more faults 
per hour) than the subjects who did not use the error 
abstraction process, but this result was not statistically 
significantly different. Combining the results for 
effectiveness and efficiency shows that the use of the 
error abstraction process led subjects to find more 
defects and did not hurt their efficiency. Overall, it is a 
worthwhile use of effort considering the significant 
increase in the number of faults. 

 
Figure 8. Performance vs. Effectiveness 

 
Figure 7. Effort Spent vs. Effectiveness 

787878



7.2 Hypothesis 2 
The requirement error taxonomy is useful for 

improving software quality. 

The results from Section 5.2 showed that in general 
the subjects rated the requirement error taxonomy 
favorably on some but not all of the attributes. Post-
experiment, interviews, and discussion with the 
subjects from the experimental group revealed some 
insight into this result. The subjects indicated that 
abstracting and classifying errors was difficult because 
they were not involved in the development of the 
requirements document nor did they have access to 
anyone who was involved in the development. This is 
an area that must be addressed in future studies. 

7.3 Hypothesis 3 
The requirement error taxonomy provides 
important insights into the requirement phase of 
software development process. 

The results from Section 5.3 showed that while the 
people errors were the largest source of errors, the 
documentation errors caused more faults. In addition, 
people errors are the major source of redundant faults, 
multiple faults, time-consuming faults, important 
faults, and severe faults. Therefore, people errors are 
an important and major cause of faults. The errors in 
the requirements error taxonomy led to many types of 
faults. Also, people errors were the primary cause of 
ambiguous information faults and process errors were 
primary cause of missing functionality faults, whereas 
the documentation errors were more evenly distributed 
among the fault types. These results provide 
confidence that the error classes in the requirement 
error taxonomy are valid and provide a good coverage 
of the requirements error space. 

7.4 Hypothesis 4 
 The contribution of research from human 
cognition, psychology, and other fields helps 
locate more faults. 

  The results from Section 5.4 indicated that all the 
subjects in the experiment group found faults related to 
errors derived from human cognition research. The 
result supports the hypothesis and provides confidence 
that using research from fields like human cognition 
made a beneficial contribution to requirement error 
taxonomy. This result also establishes the validity of 
focusing on human errors in requirement phase of 
software process.  

7.5 Hypothesis 5 
Individual performance during the error 
abstraction process depends on various 
independent variables including: process 
conformance, performance on pre-test, usefulness 
of training procedure, effort applied, and difficulty 
level. 

The results from Section 5.5 showed that process 
conformance, pre-test performance, and overall effort 
affect the number of faults detected by subjects. These 
results support the hypothesis and allow the following 
conclusions to be drawn: 1) to increase the number of 
faults detected, subjects must follow the process during 
error abstraction, classification and reinspection; 2) an 
increase in effort spent is likely to lead to an increase 
in the number of faults detected; 3) a subject’s 
performance on a pre-test can be used to predict their 
effectiveness using the error abstraction process. 

8. Comparison of Results 
This section revisits the original hypotheses from 

Section 4.1.1 to compare the results from this study 
with those obtained during the previous study [12]. 
The results are compared around the standard set of 
hypotheses for both experiments. Results from the 
original study (study 1) and the new study (study 2) are 
summarized for each hypothesis in Table 4. In general, 
the results from the replication supported the results 
from the original study. 

The error abstraction and classification process 
improved effectiveness in both cases, whereas the 
efficiency was improved in the replication only. 
Results from both studies indicate that it is easy to 
classify errors using the requirement error taxonomy. 
In both studies, People errors were an important source 
of problems. Furthermore, human cognition research 
could make a meaningful contribution to the analysis 
of requirement errors. Unlike the previous study, there 
was no significant relationship between effort and 
efficiency in the replication. Finally, in both studies, 
effectiveness depends on performance on the pre-test, 
process conformance and training.    

9. Conclusion 
Based on the results of the study, both the error 

abstraction process and the requirements error 
taxonomy are beneficial to developers who use them. 
The feedback provided by the subjects will be used to 
further refine and improve both processes to make 
them better for future studies. We plan to conduct more 
studies to empirically evaluate the error abstraction 
process and continue to refine both the error 
abstraction process and the requirement error 
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taxonomy based on the feedback from subjects. In 
future, we plan to replicate this study and other studies 
in different settings including an industrial setting. Our 
future work also includes creating a Design Error 
Classification Taxonomy using the same approach. 
Fault detection techniques will then be constructed 
based on the error taxonomies. 
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Table 4. Comparison of Results from Two 
Experiments 

H# Study 1: Factorial 
Design experiment 

Study 2: Control 
Group Study 

1 75% and 154% 
increase in faults when 
using the error 
abstraction and 
classification process 
but lowered the 
efficiency.  

The error abstraction 
and classification 
process significantly 
improved the 
effectiveness, and 
improved efficiency 
(not significant) 

2 The requirement error 
taxonomy was viewed 
favorably: it was easy 
to use and classify 
errors, understandable 
and well modularized. 

The requirement error 
taxonomy was viewed 
favorably: it was well 
understood, useful, and 
uniform across 
products. 

3 People errors are the 
major source of errors 
and faults. 

People errors are major 
source of errors and 
faults. 

4 There was a significant 
contribution from 
human cognition 

There was a significant 
contribution from 
human cognition 

5 Performance on pre-
test, process 
conformance, and 
training affects 
effectiveness; and 
overall effort affect the 
efficiency. 

Performance on pre-
test, process 
conformance and 
overall effort affect the 
effectiveness. 

808080


