

Characterizing Software Architecture Changes: An Initial Study

Byron J. Williams and Jeffrey C. Carver

Department of Computer Science & Engineering

Mississippi State University

{bjw1, carver}@cse.msstate.edu

Abstract

With today’s ever increasing demands on software,

developers must produce software that can be changed

without the risk of degrading the software

architecture. Degraded software architecture is

problematic because it makes the system more prone

to defects and increases the cost of making future

changes. The effects of making changes to software

can be difficult to measure. One way to address

software changes is to characterize their causes and

effects. This paper introduces an initial architecture

change characterization scheme created to assist

developers in measuring the impact of a change on the

architecture of the system. It also presents an initial

study conducted to gain insight into the validity of the

scheme. The results of this study indicated a favorable

view of the viability of the scheme by the subjects, and

the scheme increased the ability of novice developers

to assess and adequately estimate change effort.

1. Introduction

The nature of a software intensive system is that it

will change over time. These changes are a crucial

aspect of maintenance and have become an ever

increasing challenge for software developers. Due in

part to the amount of change that occurs, software

maintenance has been regarded as the most expensive

phase of the software lifecycle. As a system changes,

it becomes more complex making it potentially less

understandable for the developers and ultimately

resulting in decreased system quality.

Late-lifecycle changes can be defined as changes

that occur after at least one cycle of the development

process has been completed and a working version of

the system exists. These unavoidable changes pose an

especially high risk for developers. Understanding

late-lifecycle changes is important because of their

high cost, both in money and effort, especially when

they are changes to requirements. Furthermore, these

late-lifecycle changes tend to be the most crucial

changes because the customers and end-users better

understand their needs. Implementation of these

changes often causes the system to lose flexibility and

deviate from its original design. There are many

sources for late-lifecycle changes, including defect

repair, changing market conditions, changing software

environment, and evolving user requirements. Due to

the time pressure caused by these crucial late-lifecycle

changes, developers often cannot fully evaluate the

impact on the system architecture. As a result, the

architecture degrades, leading to lower system quality

and making future changes more difficult [2, 5].

When dealing with late-lifecycle changes, it is

important to focus on the software architecture, which

defines the structure and interactions of the system.

When a change affects the system architecture, the

original architectural model must be updated to ensure

that the system remains flexible and continues to

function as originally designed. When a change to the

system structure causes the interactions to become

increasingly complex, the architecture is likely to

degenerate and become un-maintainable. Architectural

degeneration leads to a mismatch between the actual

functions of the system and its original design. This

situation results in confusion for developers which

leads to either a major reengineering effort or an early

retirement of the system [3].

To address these problems, developers need a way

to better understand the effects of a change prior to

making the change. This paper proposes a change

characterization mechanism that allows developers to

conceptualize a change before implementing it will

allow them to better predict the effects of the change

on the software architecture. The developers can then

use that information to come to a consensus on how to

implement the change request and take the necessary

precautions to prevent architecture degradation. The

developers first individually characterize the change

request, then agree on the predicted impact, and finally

use historical change data, if available, to compare the

impact of similar changes.

The proposed change characterization mechanism

builds on research into change classification schemes.

The change characterization mechanism is not a

classification scheme because it does not attempt to

group change requests into separate orthogonal

classes. Rather it focuses on helping developers

identify specific features of a change that may exhibit

certain characteristics.

Classification schemes have been used to assess

the impact of changes on source code. Although

source code changes often affect the software

architecture, there are currently no classification or

characterization mechanisms focused specifically on

changes to software architecture. Another drawback to

classifying changes is that it may be difficult for

novice developers to select the correct class or

category for a change request. It may also be difficult

for experienced developers to reach a consensus on the

classification of the specific features of the change

request.

This paper presents an initial architecture change

characterization mechanism developed to address

some of the problems associated with architectural

degeneration and the shortcomings of general change

classification schemes.. An exploratory study was

conducted to assess the usefulness of the scheme and

to improve it for further study.

2. Related Work

Change classification schemes have been used by

developers to assess the impact and risk associated

with making certain types of changes to software.

Several benefits of change classification have been

identified in the literature, such as using the

classification to identify risks associated with change

implementation and determining change acceptability.

Software change classification schemes also allow

engineers to group changes based on different criteria,

e.g. the cause of the change, the type of change, the

location where the change must take place, and the

potential impact of the change. Another benefit of

change classification is that it allows engineers to

develop a common approach to deal with similar

changes, resulting in less overall effort required than if

each change was addressed individually [9].

Lientz and Swanson’s work identified the

frequency of the different types of maintenance

activities performed by a large sample of software

development organizations [6]. Based on their work

and work by Sommerville, the major types of changes

identified are: perfective, corrective, and adaptive

changes. Perfective changes result from new or

changed requirements. These changes improve the

system to better meet user needs. Corrective changes

occur in response to defects. Adaptive changes occur

when moving to a new environment or platform or to

accommodate new standards or platforms [10].

Another type of change that often affects system

architecture is a preventative change. Preventative

changes ease future maintenance by restructuring or

reengineering the system when a potential problem is

identified [7].

The architectural change process described by

Nedstam describes the change process as a series of

steps [8]:

1. Identify an emergent need

2. Prepare resources to analyze and

implement change

3. Make a go/no-go feasibility decision

4. Develop a strategy to handle the change

5. Decide what implementation proposal to

use

6. Implement the change.

An architectural change characterization scheme will

address steps 3 and 4 by helping developers

conceptualize the impact of a proposed change by

characterizing the features of the change request.

The change characterization scheme builds on

features of existing change classification and analysis

schemes that provide insight into changes that affect

software architecture. Kung, et al. studied the impact

of code changes on the class inheritance structure

within a software system [4]. Nedstam, et al. identified

changes to be either architectural: affecting the

structure of the system, functional; affecting only user-

observable attributes, or somewhere in between;

affecting both user-observable attributes and the

system architecture [8]. In creating the change

characterization scheme, all of the above approaches

were considered along with others cited in a technical

report [11], but only the features that pointed to a

direct change to the software architecture were

included.

3. Architecture Change Characterization

Scheme

The architecture change characterization scheme

provides a structured approach to architecture change

impact analysis. A developer uses this scheme to

characterize a change request starting with high-level

characteristics then progressing to a more detailed

selection of attributes and their effect on system

structure. The high-level characteristics focus on the

motivation for the change, the type of change, the size

of the change, the impact of the change on static and

dynamic system properties, and finally the functional

and non-functional requirements affected by the

change. The detailed change characteristics identify

the specific architectural changes that must be made to

the major architectural views in order to implement

the change.

Figure 1: General Change Characteristics

A developer uses an electronic form to record his

or her characterization of a change request along with

some rationale for the choices. The developer’s

characterization of the change is then used to facilitate

a discussion with other developers about the impact of

the proposed change to determine whether the change

can be implemented given the existing development

constraints and architecture complexity. The scheme

has been designed as a decision tree such that choices

made for the high-level characteristics affect the

potential choices at the more detailed levels. The

developer chooses features of the scheme relevant to

the architecture being changed. The attributes of the

scheme not relevant to the subject architecture are

ignored. The initial version of the scheme, as proposed

in this paper, will continue to undergo evolution as

additional constraints and dependencies among high-

level and low-level attributes are discovered.

The architecture change scheme is described in

more detail in the following subsections. Section 3.1

and 3.2 describes the general and specific change

characteristics, respectively. These sections provide a

high-level description of the scheme’s attributes. A

comprehensive explanation of the creation of the

scheme and a detailed description of the attributes and

their importance is available in a technical report [11].

3.1 General Characteristics

The first step in characterizing an architecture

change is to select the high-level attributes of the

change which describe the overall characteristics of

the change and its effect on the whole system and

development environment Figure 1 shows the general

change characteristics. In the figure, the shapes with

the bold outline are the general attributes, and the

shapes with the dashed line are the values that can be

selected for each attribute. The values that are

highlighted in gray are measured using the Overall

Impact Scale (Table 1). The developer first selects the

motivation for the change, either an enhancement or a

defect. An enhancement is a change that improves the

system from the point of view of some stakeholder,

while a defect is a change resulting from an error,

fault, or failure.

The next attribute, category, determines the type

of change. This attribute can be perfective,

corrective, adaptive, or preventative (described in

Section 2).

The granular effect of the change explains the

depth or size of the change in terms of its architectural

impact. There are three options to choose from:

functional, functional/architectural, and

refactor/restructure. Purely functional changes affect

the user-observable attributes and specific system

functions. Purely architectural changes

(refactor/restructure) are those that affect only the

architecture and not a function observable to the user.

The functional/architectural change is a change that

effects both how the system functions to the user and

the architectural structure of the system.

The properties attribute determines the effect of

the change on the logical and runtime system

structures. A static change affects the logical system

properties, such as the decomposition of modules,

module dependency, the system inheritance structure

and other system properties that affect the static

structure. A change to the dynamic properties affects

how data is propagated through the system, the

behavior of distributed components, how concurrent

processes execute, and other runtime behaviors. For

the properties attribute we introduce the Overall

Impact Scale (Table 1) to determine the extent of the

effect on each property.

Change requests are motivated by a number of

different issues. The next list of attributes identify

which software engineering issues the change will

address in terms of functional and non-functional

requirements.

Table 1: Overall Impact Scale

Rating Name

0 No impact

1 Cosmetic impact

2 Minor impact

3 Substantial impact

4 Major focus of change

The next set of attributes for the general

characterization offer more detail into the changes that

must be made to the system architecture. The

developer can choose the logical and runtime

architectural views that must be changed in order to

implement the change request.

The logical attribute includes a comprehensive list

of general architecture characteristics that can be used

to describe the static framework of most object

oriented software intensive systems. The list of logical

architecture characteristics includes; dependency

relationships, layers, inheritance structure, module

decomposition, and source structure. The exact

changes made to each view of the architecture will be

described in more detail during the specific

characterization. At this point, the developer identifies

the overall impact, if any, to each architecture

characteristic.

The runtime attribute serves a similar purpose as

the logical attribute. This attribute lists the dynamic

architecture characteristics common to most object

oriented software intensive architectures. The list of

general runtime views include; control flow

processing, repository access, concurrent processes,

component interaction, distributed components,

and component deployment.

The functional issues include technology, data

access, data transfer, system interface,

environmental, user interface, and domain

constraints. The non-functional issues are common

areas where the goal of the software change is to

improve on some quality attribute. These issues

include usability, reliability, availability, security,

portability, complexity, flexibility, and scalability.

The general architecture change characterization

aims to provide the developer with a means of

describing a change request in terms of its overall

affect on the system. The specific characterization

which provides more detail into the changes required

to the logical and runtimes structures is described in

the next section.

Figure 2: Specific Change Characteristics

3.2 Specific Characterization

The specific architecture change characterization

allows the developer to analyze the architecture while

making recommendations for changes to the overall

structure in order to implement the change request.

The changes that are reflected in the architecture

include changes to any architecture module, interface,

component, or connections between modules and

components. Each rating will correspond to the type of

change applied to an item in the logical and runtime

lists of architecture characteristics. Figure 2 provides a

visual overview of the specific change characteristics

and the types of changes that can be made to elements

in each architecture view. These changes include

adding, modifying, and removing elements and/or the

connections between the elements.

The Specific Impact Scale found in Table 2

describes the magnitude of the changes that can be

made to each of the architecture structures listed. For

each type of change, the developer selects a value

from the Specific Impact Scale that identifies the

magnitude of the change.

Table 2: Specific Impact Scale

Rating Name

0 No impact

1 Small impact–single mod./comp.

2 Small impact – multiple mod./comp.

3 Significant impact–single mod./comp.

4 Significant impact–multiple

mod./comp.

4. Study Description

The main goal of this study was to gain insight

into the feasibility and usefulness of the architecture

change characterization scheme. Stated formally, in

GQM format, the goal was:

Analyze the architecture change characterization

scheme in order to understand it with respect to

usability, viability, and architecture impact estimation

from the point of view of the researcher in the context

of a classroom study

The study focused on architectural impacts

because architectural changes tend to have an adverse

effect on system quality when performed without

taking the necessary precautions to prevent

degradation. The questions addressed include:

1. How well did the change characterization by the

subjects match the change characterization by the

researchers?

2. Is the characterization scheme easy to use?

3. Do changes that exhibit different characterizations

require different amounts of effort to implement?

4. Does the scheme support effort estimation?

5. Does the scheme add value to the change process?

6. Does the scheme facilitate communication

amongst developers?

Answers to these questions will provide insight

into whether the subjects understand the scheme and

help to identify its strengths and weaknesses.

4.1 Study Setup

The study was conducted in the Software

Architecture and Design Paradigms class at

Mississippi State University. This class focuses on

software architecture development methodologies and

analysis methods including model representations,

component-based design, design patterns, and

frameworks. There were 25 subjects (22 seniors and 3

graduate students) who participated in the study.

During the experimental tasks, described in

Section Error! Reference source not found., the

subjects worked with the artifacts from the Tactical

Separation Assisted Flight Environment (TSAFE), a

tool designed to aid air-traffic controllers in detecting

and resolving short-term conflicts between aircraft.

The TSAFE source code contains 80 java classes and

20k lines of source code. Prior to the beginning of the

study, each subject had already created their own

version of an architecture document using the TSAFE

requirements. The process of creating their own

TSAFE architectures helped them become familiar

with the system.

4.2 Training and Experimental Tasks

Before using the characterization scheme, the

subjects were given three 1-hour training sessions. The

first session provided a general overview of software

changes and highlighted the importance of designing

flexible architectures that could readily handle change.

In the second session, the subjects were given the

requirements and architecture for a sample system.

They were shown sample change requests and then

modified the architecture to address the requests. This

session gave the subjects hands-on experience making

architecture changes. The third and final training

session focused on explaining the purpose for the

characterization scheme, defining the attributes,

detailing its use, and allowing the subjects to use it on

several examples. This session ended with a

discussion of the characterization scheme to answer

any questions that may have arisen during the training

session.

The change classification study took place during

the final two homework assignments of the semester.

The subjects were first given feedback on the TSAFE

architectures that they created earlier in the semester,

and then were given the “gold standard” TSAFE

architecture created by the authors to be used for the

study. To make the assignments tractable, the subjects

were only required to change the architectural

diagrams and not change the actual source code. The

actual implementation of each source code change was

done by one of the authors. The resulting architecture

and code was used as a basis of comparison with the

subject’s changes during analysis.

After the second training, the subjects were given

a single change request to complete for the first

homework assignment. For this task, the subjects were

required to analyze the architecture, change the

architecture diagrams, record the details of the change,

and provide justification and rationale. After each

subject completed their individual changes, they were

randomly assigned a partner. Each pair repeated a

similar process as was done individually. The subjects

turned in their updated group architecture diagrams

and detail forms along with a report describing their

interaction and comparing the architecture created by

the pair to the ones created individually.

Table 3: Training and Experimental Tasks

Task Description Time

T1 Software change overview 1-hr

T2

T2.1

Architecture change exercise

Review “gold standard” arch.

1-hr

A1

A1.1

A1.2

A1.3

A1.4

Individual arch. change

Record change detail

Group arch. change

Record change detail

Submit experience report

1-wk

T3

T3.1

Change characterization training

Characterization exercises

1-hr

A2

A2.1

A2.2

A2.3

A2.4

A2.5

A2.6

Individual arch. change

Characterize changes

Record change detail

Group arch. change

Characterize changes

Record change detail

Submit experience report

2-wk

A3 Post-study survey 1-hr

Table 4: Study Change Requests

- Name Description & Impact

1 –

Confor-

mance

Monitor

Calculate whether flights are on set

courses and visually alert ATC if not.

Add module, determine interface,

and change GUI classes.

2 – Feed

Display

Add connections to data feed to

display raw flight coordinates to

ATC. Transfer data from low-level

classes that handle raw flight data to

GUI modules.

3 – Loss

of

Separation

Detector

Visually alert ATC when 2 flights are

within certain distance from each

other. Add module, determine

interface, and change GUI classes.

In the second homework, the subjects were given

two change requests to make on the TSAFE

architecture. To ensure as much consistency among

subjects as possible, the subjects were always asked to

return to the original “gold standard” version of the

architecture before making any changes (i.e. the

changes did not build on each other). This assignment

was given after the third training session, allowing the

subjects to use the change characterization process.

The subjects performed the same steps as in the first

assignment plus the additional step of characterizing

the change requests with the change characterization

scheme. The steps followed by the subjects included:

characterization of the change request, modification of

the architecture diagrams, and documentation of the

change. The subjects were then assigned a different

partner to perform the changes as a group. Again, each

pair had to come to a consensus on the change

characterization, implementation detail, and provide a

description of their experiences. They were asked to

describe how they used the characterization scheme

and any differences between their individual

characterization and changes and the group ones.

At the end of both tasks, the subjects were given a

survey on their opinions about the difficulty of each

change, the ease of using the change characterization

scheme and whether the change scheme was beneficial

to the process. Table 3 lists the study tasks which

includes trainings and homework activities. Table 4

lists the change requests used in the study.

4.3 Data Collection

To address the questions of interest (Section 4),

both qualitative and quantitative data was collected.

The qualitative data was obtained from questionnaires,

surveys, and experience reports submitted by the

subjects. The quantitative data was provided by the

subjects through electronic forms recording the

implementation details for each change, including the

number of modules and components changed and

which architecture views would be affected by the

change. Finally, the modified architectures were

collected from each subject to analyze the exact

changes made to the system architecture.

5. Study Results and Analysis

This section is organized around the six research

questions posed in Section 4. For each question, the

relevant qualitative and quantitative data is presented.

1. How well did the change characterization by the

subjects match the change characterization by the

researchers?

The two changes from Assignment 2 (Change 2

and 3) were characterized by one of the authors prior

to the study (the “gold standard”). These values are

shown in Figure 3 and Figure 4. The answer for this

question comes from the characterization data

submitted by the subjects for Changes 2 and 3. If the

subjects correctly understood the attributes of the

characterization scheme and how the changes requests

would affect those attributes, then their

characterization of the changes should have been

similar to the “gold standard” characterization. Any

discrepancies in the result are likely caused by a

partial or complete misunderstanding of the attributes

of the characterization scheme and/or the TSAFE

architecture that was provided to the subjects.

0 1 2 3 4

StaticProps

DynProps

DepRelat

Layers

InhStruct

ModDecom

SrcStruct

CompInt

ContFlowProc

RepAcc

ConcProc

DistComp

CompDepl

Tech

DataAcc

DataTrans

SysInter

Envir

UserInter

DomConst

Usability

Reliability

Availability

Security

Portability

Complexity

Flexibility

Scalability

C
h

a
ra

c
te

ri
z
a
ti

o
n

 C
a
te

g
o

ry

Characterization Value

Subjects (Mean) Gold Standard

Figure 3: Characterization Comparison - Change 2

In order to determine the “closeness” of the

characterizations, the mean of values of the subject’s

characterizations were computed. This value was

compared to the “gold standard” for each change. The

subjects characterizations were viewed to be “close” to

the “gold standard” if the (absolute value) of the

difference between the two values was less than or

equal to 1. Of the 28 general characteristics, 22

attributes met the standard for Change 1 and Change

2. Figure 3 and Figure 4 show a comparison of mean

subject values to the “gold standard” for Change 2 and

Change 3 respectively. Based on these results, a

majority of subjects seemed to understand how to use

the scheme.

0 1 2 3 4

StatisProps

DynProps

DepRelat

Layers

InhStruct

ModDecom

SrcStruct

CompInt

ContFlowProc

RepAcc

ConcProc

DistComp

CompDepl

Tech

DataAcc

DataTrans

SysInter

Envir

UserInter

DomConst

Usability

Reliability

Availability

Security

Portability

Complexity

Flexibility

Scalability

C
h

a
ra

c
te

ri
z
a
ti

o
n

 C
a
te

g
o

ry

Characterization Value

Subjects (Mean) Gold Standard

Figure 4: Characterization Comparison - Change 3

2. Is the characterization scheme easy to use?

In the survey completed after the two

assignments, the subjects were asked to indicate their

level of agreement with the following statements about

the usefulness of the classification scheme:

1. The attributes are logical and easily understood

2. The scheme is beneficial for a developer making a

change

3. I understood the effect of the changes to the

system architecture better using the scheme than

without it

4. The scheme was detailed and covered all aspects

of the architectural implementation

5. The change scheme helped me to understand the

impact of the change request

For each question, a 5-point Likert rating scale was

used, ranging from 1 - totally disagree to 5 - totally

agree. Figure 5 shows these results.

The generally positive results provide support for

the idea that characterization scheme is both useful

and practical. The results were analyzed the results

using a one-sample t-test with a test value of 3

representing a neutral response. The results of the test

are show in Table 5. The degree of freedom for each

test is 24. The results show a mean response greater

than 3 and this value is statistically significant

0 0

2

1

0

5

0

4

0

1

3 3

5

1

5

12

16

6

11

13

5

6

8

12

6

0

2

4

6

8

10

12

14

16

18

Logical

Attributes

Beneficial for

Developers

Understand

Arch.

Effects

Detailed

Scheme

Change

Impact

o

f
S

tu
d

en
ts

Totally Disagree Somewhat Disagree

Neither Somewhat Agree

Totally Agree

Figure 5: Subject’s Survey Results

Table 5: Statistical Survey Results

Statement Mean T-Value P-Value

1. 3.68 3.302 .003

2. 4.12 9.333 .000

3. 3.56 2.133 .045

4. 4.32 7.333 .000

5. 3.96 6.080 .000

3. Do changes that exhibit different characteristics

require different amounts of effort to implement?

Based on the “gold standard” characterization

shown in Figure 3 and Figure 4, Change 2 and 3 were

characterized differently.

Change 2 was a perfective enhancement that was

a functional changed that did not require the addition

of any modules. All of the information required to

display the feed data was already being processed by

the system. The change request only required some

portion of the data (the feed) to be propagated through

the system to reach the GUI display function. This

change required the modification of a small number of

LOC in a relatively large number of modules.

Change 3 was also a perfective enhancement that

was both a functional and architectural change

because it required the addition of a significant

architecture module. To use of this module, a parent

module and other modules that need to interact with

the new module had to be changed to provide the

additional functionality. Several lines of code were

also added to a user interface module so that the

results of calculations could be displayed graphically

to the user when the function is triggered. We used a

tool to compare the source code differences of each

changed TSAFE implementation to the original in

order to determine the number of modules changed

and the number of LOC changed for each change.

Table 6 shows the change implementation detail for

Change 2 and Change 3. Changes 2 and 3 had

different characterizations. This difference resulted in

a differing amount of implementation effort.

Table 6: Change Detail

Detail Change 2

Feed

Display

Change 3

LOS

Detector

Modules

Modified
7 7

Modules Added 0 1

LOC Mod./Add. 37 190

4. Does the scheme support effort estimation?

For each change the subjects were required to

estimate the number of module and component

changes that would be required. First, the subjects

were asked which change would require the most

effort to implement. A majority of 16 subjects

identified Change 3 as the most difficult, 6 subjects

Change 2, and the remaining 3 chose Change 1.

Changes 1 and 3 were very similar changes in terms of

their impact to the architecture and actual

implementation detail (both were implemented by

adding one module and modifying 7). We hypothesize

that the majority of the subjects chose Change 3 as the

most difficult because of the rigor of the change

characterization process in forcing them to consider

which aspects of the architecture would be affected.

When comparing the results for Changes 1 and 3

(which were similar in terms of the actual

implementation), the subjects estimated that a different

number of modules would have to change. The mean

number of module changes estimated for Change 1

was 1.84 and for Change 2 was 2.88. This difference

was statistically significant (t4 = -2.153, p=.036 [t-

test]; Z = -2.399, p=.016 [Mann-Whitney]). This result

suggests that the subjects were able to identify

additional architectural changes when using the

characterization scheme (Change 3) that were not

apparent without the change scheme (Change 1).

5. Does the scheme add value to the change process?

In the post study survey the subjects provided

their opinions of the scheme, how the scheme could be

improved, and any problems that they encountered

while using the scheme. These questions were used to

elicit information to help with improvement of the

characterization scheme and to better understand its

strengths. In the list below the number of subjects who

gave each response is in parenthesis. The subjects said

that the characterization scheme:

 Aids in determining what changes should be made

to each architecture view and the impact the

change will have on the view (7);

 Helped ensure thoroughness of change detail (6);

 Would be a good communication tool for project

managers, software architects, maintainers, and

developers (6);

 Is good for large changes but not practical for

small changes (5);

 Has too many attributes (5);

 Requires more training in its use than was

provided (3);

 Is complete with the right level of detail (2);

6. Does the scheme help facilitate communication

amongst developers?

For both assignments, the subjects first worked

individually then with a partner. These two steps were

used to capture the interaction between the subjects to

determine if the characterization scheme facilitated the

discussion of the impact of a change request.

The reports were analyzed and coded to extract

information about the use of the characterization

scheme during the group meeting. Each group did not

specifically comment on their use of the

characterization scheme in the group meeting, but any

statements about to the use of the scheme were

extracted from the experience report. Some of the

comments (paraphrased) made in the reports include:

 Four groups reported that they recorded the

characterization of the changes after discussing

their individual change rationale. Next, they

determined how their individual changes

compared to the changes made jointly using the

scheme. Finally, they recorded the change detail

reflected by the scheme and updated the

architecture diagrams to reflect this new

combined architecture. They used the scheme to

determine the change detail.

 One group used the characterization scheme as a

checklist while recording the architecture changes

on to the change detail form. The group stated that

the scheme helped their decision process by

focusing their discussion on which changes listed

for each view were needed.

 Three groups did not use the scheme to make the

actual decisions. They simply used it at the end of

the process to record the characterization of the

changes after their change decisions were made.

 Two groups used the characterization scheme

after their analysis but prior to modifying the

architecture diagrams. By using the

characterization scheme at this point, they were

able to determine what changes they would have

to make to each architecture view.

6. Study Implications

The purpose of this initial study was to assess the

viability of an architecture change characterization

scheme designed to assist developers in estimating the

potential effect of a change on an architecture. In

Section 5, we presented qualitative and quantitative

data to address a set of research questions. The main

contribution of this study is the presentation and

analysis of an initial architecture change

characterization scheme. The subjects found the

scheme to be useful and commented that it has

practical application in a development environment.

The characterization scheme also increased the ability

of novice developers to analyze the complexity and

difficulty of a software architecture change.

We also wanted to determine whether changes

with different characterizations would require different

amounts of effort to implement. This result motivates

the use of the change characterization scheme as an

input for effort estimation. Predicting software change

effort is a difficult task even for experienced

developers. Therefore, the purpose for creating this

scheme was to provide input to a decision support

model that will incorporate change characterization,

impact analysis, and risk assessment to aid developers

in making go/no-go decisions for changes based on

how the system will be affected.

The results obtained did, in general, support the

conclusion that differently characterized changes

require different amount of effort. That is, Change 3

required significantly more modules and LOC to be

changed than Change 2. The subjects also qualitatively

agreed that Change 3 was more difficult.

7. Threats to validity

This section discusses the threats to validity that

were present both in the design and in the execution of

the study and their potential impact on the results.

Using Students to Perform Analysis: Students

are frequently used in empirical studies to provide

some evidence of the usefulness of software

engineering products and processes [1]. Students were

able to provide data about the use of the scheme and

answer some important questions about it. The threats

associated with using students in this study include

their potential bias in answering survey questions for

fear of criticizing. They also may not have the

appropriate experience to evaluate the scheme’s

usefulness in a professional setting.

Conclusions about Scheme Estimation

Support: The results in Section 5 indicated that the

use of the characterization scheme helped the subjects

correctly identifying the change that would require the

most implementation effort. There was also a

significant difference in the number of modules

changes estimated by the subjects when using the

scheme than when not using it. This difference could

have been caused by a learning effect. When

performing the third change, the subjects were more

familiar with the process and architecture and better

able to asses the change.

Change Differences from Other Factors: The

different amounts of effort required to implement

Changes 2 and 3 could have been caused by factors

other than the difference in the change

characterization. Because the subjects only

characterized the 2 changes (and did not implement

them), we were unable to investigate other possible

differences that could have caused the different

amounts of effort.

8. Summary and Future Work

We will continue to refine the characterization

scheme by making changes based on the study

feedback. We will characterize changes in historical

datasets that include implementation detail that can be

used for validation. This activity will allow us to

identify trends about change characteristics in a

particular system, and recommend best-practices for

future changes with similar characteristics.

Change characterization can be a useful tool in

determining the impact on the system. After further

research, we envision that this characterization

mechanism could be incorporated in to an

organization’s change implementation process. An

additional step could be added after receiving a change

request to allow the developers to characterize that

change request.

Being able to accurately identify changes that will

affect software architecture will aid developers in

understanding the change impact and help them make

architecture changes without degrading the quality of

the system.

9. Acknowledgements

We thank the students in Software Architecture

and Design Paradigms who participated in this study.

This work is supported by NSF Grant CCF-0438923.

10. References

[1]. J. Carver, L. Jaccheri, S. Morasca, and F. Shull. "Issues

in Using Students in Empirical Studies in Software

Engineering Education," in Proceedings of the Ninth

International Software Metrics Symposium, 2003, pp.

239-249.

[2]. S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and

A. Mockus, "Does Code Decay? Assessing the

Evidence from Change Management Data," IEEE

Transactions on Software Engineering, v. 27, no. 1,

2001, pp. 1-12.

[3]. L. Hochstein and M. Lindvall, "Combating

Architectural Degeneration: A Survey," Information

and Software Technology, v. 47, no. 10, 2005, pp. 643-

656.

[4]. D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and

C. Chen. "Change Impact Identification in Object

Oriented Software Maintenance," in Proceedings of the

International Conference onSoftware Maintenance,

Victoria, BC, 1994, pp. 202-211.

[5]. M. M. Lehman and L. Belady, Software Evolution -

Processes of Software Change. London: Academic

Press, 1985

[6]. B. Lientz and B. Swanson, Software Maintenance

Management Addison-Wesley, 1980

[7]. P. Mohagheghi and R. Conradi. "An Empirical Study of

Software Change: Origin, Acceptance Rate, and

Functionality Vs. Quality Attributes," in Proceedings of

the 2004 International Symposium on Empirical

Software Engineering (ISESE '04), 2004, pp. 7-16.

[8]. J. Nedstam, E. A. Karlsson, and M. Host. "The

Architectural Change Process," in Proceedings of the

2004 International Symposium on Empirical Software

Engineering (ISESE '04), 2004, pp. 27-36.

[9]. N. Nurmuliani, D. Zowghi, and S. P. Williams. "Using

Card Sorting Technique to Classify Requirements

Change," in Proceedings of the 12th IEEE International

Requirements Engineering Conference, 2004, pp. 240-

248.

[10]. I. Sommerville, Software Engineering. 7th ed: Addison-

Wesley, 2004

[11]. B. Williams and J. Carver, "Characterizing Changes to

Assess Architectural Impact", in Technical Report

MSU-070115, Department of Computer Science and

Engineering, Mississippi State University, 2006.

