
I

I

Gestalt Principles Applied To Software Engineering
Diagrams: An Initial Study

Krystle Lemon 1, Edward B. Allen 1, Jeffrey Carver 1, and Gary Bradshaw2

10epartment of Computer Science and Engineering
300 Butler Half, Box 9637

Mississippi State, MS 39762
+1 662-325-2756

{kdI18, carver}@cse.msstate.edu;
edward.allen@computer.org

ABSTRACT

Discovering root-causes of comprehension errors in software
design is important to prevent their presence in software systems.
This research synthesizes software engineering and Gestalt
principles of similarity, proximity, and continuity for the purpose
of discovering whether certain visual attributes of diagrams
(dashed arrows, severe complexity, etc.) can affect the accuracy
and efficiency of understanding correct relationships amongst the
entities in the diagram. Twenty-seven subjects viewed diagrams
of different types and answered questions about them. The
experiment tested whether two dependent variables, accuracy and
response time, were significantly affected by independent
variables, diagram type (simple 1, simple2, complex), Gestalt
principles (good vs. bad), and forward/backward (question order).
The results of this study indicated that the Gestalt principles did
affect the comprehension in the complex diagrams.

Keywords
Gestalt principles, diagram comprehension, empirical software
engineering, software architecture, cognitive science

1. INTRODUCTION
The long-term goal of this work is to find ways to prevent

errors early in the software development lifecycle that may be
difficult and expensive to correct later. Software engineers
routinely use diagrams that depict component relationships. Such
diagrams often represent the architecture of a system, modeling
the structure, behavior, relationships, and constraints among
components while ignoring implementation details [3]. Because
software system implementation is based on the software
architecture, misinterpretation of software architecture diagrams
could easily result in an incorrect system implementation.
Therefore, it is important that software engineers understand
software diagrams to prevent errors from propagating to later
phases of the software-engineering life cycle.

With the aid of cognitive science, which seeks to understand
the human mind and how it learns, this work seeks to identify
factors that can impair comprehension of software-engineering
diagrams [4]. In cognitive science, Gestalt principles of
perceptual organization deal with features that combine to form
overall perception, such as the relation of figure to ground and
relationships among visual features [1]. Cognitive-science
research results in areas such as visual search and tracing may
help uncover root-cause errors in comprehension of diagrams.

20epartment of Psychology
Box 6161

Mississippi State, MS 39762
+1 662-325-0550

glb2@ra.msstate.edu
I~
~.
i

This paper presents the results of a study coupling cognitive
science and software engineering to investigate whether certain
diagram characteristics affect comprehension by software
engineers.

This paper is organized as follows. Section 2 provides an
overview of diagram comprehension and related work. Section 3
describes the study. Results, discussion, and threats to validity are
presented in Section 4. Lastly, Section 5 discusses the conclusions
and future work.

2. DIAGRAMCOMPREHENSION
Software-architecture diagrams often show the flow of

information between components in a software system. Such
diagrams consist of lines with arrowheads pointing in the
direction of information flow, boxes representing system
components, and annotations. Software engineers must
comprehend all of this information and process it within their
mental workspace [3]. Hungerford, et al. showed that diagrams
impose less cognitive load compared to text [2]. Not surprisingly,
software engineers routinely make extensive use of a variety of
diagrams.

The Gestalt principles address why individuals can perceive
whole elements out of incomplete elements. They address how
objects are viewed in relation to figure and ground, similarity,
proximity, continuity, closure, area, and symmetry [I].

This study focuses on the Gestalt principles of similarity,
proximity, and continuity. The principle of similarity states that
objects with similar characteristics belong together. The principle
of proximity states that objects that are close together are
perceived as belonging together. Finally, the principle of
continuity states that continuous figures are perceived more often
than non-continuous figures. An example of a continuous figure is
when a line is perceived to pass through an object instead of
viewing it as two separate lines on the object: one entering and
another leaving. Therefore, some of our diagrams were drawn
with these principles in mind, with solid lines with similar boxes
grouped together, and with minimum spacing between them. This
initial study did not try to separate out the effects of each of these
principles; rather they were all taken together. This study
investigated two research questions, in the context of diagram
comprehension.

Hypothesis 1: Diagrams that follow Gestalt principles of
similarity. proximity. and continuity offer better accuracy
than diagrams that do not.

5th ACM-IEEE International Symposium on Empirical Software Engineering - Vol II: Short Papers and Posters 48



Hypothesis 2: Diagrams that follow Gestalt principles of
similarity, proximity, and continuity afferfaster response time
than diagrams that do not.

3. THE STUDY
The study was conducted at Mississippi State University

(MSU) in the Fall of 2005, using the Adobe Authorware software
to administer the experiment The 27 subjects came trom the
Software Architecture course (IS subjects) and the Introduction to
Software Engineering course (12 subjects). These subjects were
upper-level undergraduates and graduate students. The software
architecture course covers basic software architecture concepts, as
well as, creation and use of architecture diagrams. The
Introduction to Software Engineering focuses on software
engineering processes, including the diagrams that are used
during those processes.

To simulate real-world diagrams, three diagrams, created by
software-engineering students as part of a homework exercise
during a previous semester of the Software Architecture course,
were selected and modified. Each diagram contained named

boxes (system components) and lines with arrowheads
(representing information flow). The three diagrams were labeled
simple], simple2, and camplex, where simple] and simple2
diagrams where similar in number of boxes and lines in the
diagrams and the complex diagram had approximately three times
as many lines and twice as many boxes in the diagram. For each
of the three diagrams, two topologically equivalent versions were
produced. The gaod version of the diagram was created using the

.Gestalt principles (described in Section 2), where grouping,
proximity, and continuity where adhered to in the drawing. The
had version of each diagram was simply the original diagram with
the same box names and connections as the good version without
consideration of the Gestalt principles. Figures I and 2 show the
good and bad versions of the complex diagrams.

Each subject viewed simple I diagram followed by simple2
diagram followed by complex diagram. Subjects were given 20

~-' I~'=~~

I

_._~ i L~"";"'1 _.~_.
--

]
--, :;:;:...J.-~- J

, ~ r-: .~_ll- "'"
l_~~__r-L? ~~.,.!~-1' ..~--

§. ~>~",::::-_.,.",-.",=~:J

-::E
-'~ Il

! '-
. .

"-;-1'-"" ..,,/' -'- / ..,.~..~-- ~ i

.

;,.:::;:::.,~.;- - i--~ ':.:- '. -,-_J JI
,-'" l' ;::rJ ,'.1:;---}::r--:l I 11

-- L-~-J~~~~J~JI
Figure 1: Complex diagram good version

questions per diagram. All students answered the same questions.
However, to assess the potential effect of question order, some
answered questions I through 60 (forward) (I through 20 for each
diagram) and some answered questions 60 through I (backward)
(20 through I for each diagram). The questions asked the subjects
to determine whether messages were sent between objects in the
diagram (i.e. whether there was a line connecting the boxes). An
example question is "Does Location Identity send messages to
Towing Garage?" The subjects were split into four balanced
groups as shown in Table 1.

" ."" .." " --_m- - ,.- _m "m',',',-'

Figure 2: Complex diagram bad version

The subjects were given as much time as needed to answer

the questions. At their own pace, they proceeded to answer the
questions one by one while the associated diagram was still
visible. They were not allowed to skip any questions.

4. RESULTSand DISCUSSION
This section describes the statistical analysis performed on the

quantitative data in order to determine whether a significant
difference in diagram comprehension exists between different
types of diagrams. As this was an initial study, an alpha value of
0.1 was chosen for significance tests.

4.1 Summary of Quantitative Data
This study had two dependent variables and three independent

variables. The dependent variables investigated in this study were
question accuracy and response time. The independent variables
were: Gestalt principles used (good vs. bad), type af diagram
(simple], simple2, or complex), and question arder (forward or
backward). The question order was used as a control variable to
determine whether the presentation order of questions had any
effect on subject response.

The goal of the statistical analysis was to determine if any of
the independent variables had a significant effect on either of the
dependent variables. To perform an outlier analysis, we made a
scatter plot with the subjects' response time on one axis and the
number of correct responses on the other axis. A visual inspection
of this chart showed that the accuracy for one subject was more
than two standard deviation below the mean. Therefore, this
subject's data was removed as an outlier and was not included in
any further analysis.

For the dependent variable question accuracy. most subjects
were very accurate with low variability across all diagrams,
Further analysis of this variable was unlikely to show interesting
results. Therefore, the remainder of this section focuses on the
respanse time variable,

51hACM-IEEE International Symposium on Empirical Software Engineering - Vol II: Short Papers and Posters 49

Table 1: Experiment Design

Group Simple I Simple2 Complex FwdlBackwd

I Good Bad Good Forward

2 Good Bad Good Backward

3 Bad Good Bad Forward

4 Bad Good Bad Backward



Three separate ANOVA tests were run for the simplel,
simple2, and complex diagrams to isolate the effects of the
independent variables for each diagram type. The ANOV A test
for response time for simplel diagrams was not significant. The
ANOVA test did show an interaction between the variables

forwardlbackward and goodlbad with F (27.1)=5.896 and p=0.023.
Further analysis was done using independent sets (-test, isolating
the effects of the forward/backward variable and the good/bad
variable. The forwardlbackward variable was not significant. The
goodlbad variable was not significant alone.

The simple2 diagram ANOV A statistical tests yielded
insignificant results for all variables and further I-tests confinned
this. The ANOV A tests used both the accuracy and response time
as dependent variables to model the significance of the diagram
type variable, goodlbad variable, and the forward/backward
control variable. A similar analysis was completed for the
complex diagrams and the results showed that the goodlbad
variable was very significant where F (27, I) = 0.00 I and p=O.004.

4.2 Discussion of Results
The results obtained suggest that the range of complexity

among the diagrams presented in the experiment was not
sufficient to obtain a useful variation in accuracy results.
Consequently, Hypothesis I remains unevaluated.

Figure 3 depicts the distribution of response times. The
statistical tests showed that the Gestalt principles for the complex
diagram significantly affected the response time variable.
Therefore, we conclude that the comprehension time of good
diagrams was faster than that of bad diagrams providing support
for Hypothesis 2. This conclusion encourages future
experimentation to detennine which Gestalt principles can be
applied in software engineering to make more comprehensible
diagrams and what features should be avoided.

4.3 Threats to Validity
By using two different question orderings a potential threat

caused by the ordering of the questions was assessed. The
analysis showed that question order had no effect on either
accuracy or time. By balancing the presentation of good and bad
diagrams, the influence of individual abilities was balanced.

Although we had only three pairs of diagrams, decreased

350000-1

JOOOOO-I
I

Good/Bad

or 0 Good

. 2SOOOO

I

§\! Bad

~
;!'- I

I !
Simpl..1 Sim~I..2 I jComplex

Type.fExperiment

Figure 3: Distribution of response time in milliseconds

,

response times from simple] to simple2 diagrams suggest that a
learning effect occurred between the subjects viewing the first and
second diagrams. This threat to validity was not addressed. The
increase of time from the simple2 to complex diagram could
correspond to subjects having a higher mental workload because
the complexity increases, as expected. This study did not evaluate
the effect of complexity. Due to the fact that the subjects were
students, a threat to external validity is present. However, the
students' tasks were similar to professional subjects' tasks. .

5. CONCLUSIONS
This initial experiment investigated the basic question of

whether certain factors affect diagram comprehension. The results
of this study showed that the Gestalt principles did affect the
comprehension in the complex diagram. Gestalt principles of
perceptual organization show promise in easing the task of
comprehending software-engineering diagrams. This research
aims at helping software engineers to detennine what type of
artistic approaches to consider when designing the software
architecture diagrams to help avoid errors in the later stages of the
software-engineering lifecycle.

Future work will include studies that analyze various types of
diagram features and the effect of each Gestalt principle.

J

f

6. ACKNOWLEDGMENTS
Our thanks go to Ginger Cross, student subjects, MSU ESE

research group, Byron Williams, and F. Chevonne Thomas. This

work was supported in part by NSF grant CCR-0132673.

7. REFERENCES
[I] J. A. Anderson, Cognitive Psychology and Its Implications,

W. H. Freeman and Company, New York, New York, 1990,
66-68.

[2] B. C. Hungerford, A. R. Hevner, and R. W. Collins,
"Reviewing Software Diagrams: A Cognitive Study," IEEE
Transactions on Software Engineering, vol. 30, no. 2, Feb
2004, 84-95.

[3] T. Klemola and J. Rilling, "Modeling Comprehension

Processes in Software Development," Proceedings: First

IEEE International Conference on Cognitive Informatics,

Aug 2002, 329-336.

[4] 1. Reason, Human Error, Cambridge University Press,

Cambridge, United Kingdom, 1990.

[5] P. Thagard, Mind: Introduction to Cognitive Science, MIT

Press, Cambridge, Massachusetts, 2005.

5th ACM-IEEE International Symposium on Empirical Software Engineering - Vol II: Short Papers and Posters 50


