
Comparing Code Reading and Testing Criteria: A
Replication of Experimental Studies

JoseCarlosMaldonado SandraFabbri ManoelMendon9a
ICMC-USP, Caixa Postal 668, DC-UFSCar, Caixa Postal 676 UNIFACS
13.560 Sao Carlos, SP, Brazil 13565-905 Sao Carlos, SP, Brazil 41950 Salvador, BA, Brazil

jcmaldon@icmc.usp.br sfabbri@dc.ufscar.br mgmn@unifacs.br

Emerson D6ria
UNOESTE

19050-680 Pres. Prudente, SP, Brazil

emerson@icmc.sc.usp.br

Luciana Martimiano
ICMC-USP, Caixa Postal 668,
13.560 Sao Carlos, SP, Brazil

luciana@icmc.usp.br

Jeffrey Carver
Mississippi State University
Box 9637, MS 39762, USA

carver@cse.msstate.edu

Forrest Shull
Fraunhofer Center for Experimental

Software Engineering
College Park, MQ 20740, USA

fshull@fc-md.umd.edu

ABSTRACT
In this paper, we describe a variation of the Basili & Selby [1] and
Kamsties & Lott [2] experiments. Named ITonCode, this
experiment was conducted in the context of the Readers Project
[3], a collaborative research initiative on software defect detection
techniques supported by Brazil (CNPq) and US (NSF) research
agencies. This experiment aims to compare inspection and testing
techniques at code level. It extends previous experiments by
introducing incremental testing, composed of control flow, data
flow and mutation (error-based) criteria. Although data-flow and
mutation based criteria have been introduced, code reading
presented the best percentage of detected faults. On the other
hand, functional testing performed worst than incremental testing.
Moreover, the combination of any two techniques performed
better or equal to the techniques alone. Similar results were
obtained for defect isolation.

Categories and Subject Descriptors
D.2.4 [Testing and Debugging]: Code inspections, walk-
throughsand testing.

General Terms
Experimentation, Validation.

Keywords
Experimental Studies, VV &T techniques characterization.

1. INTRODUCTION
The task of choosing the best software engineering techniques,
methods and tools to achieve a set of quality goals under a given
scenario is not a simple endeavor. Experimental studies are
fundamental for executing cost-benefit analyses of software
engineering approaches. Based on empirical evidence, one can

Victor Basili
Department of Computer Science,

University of Maryland
Maryland, USA

basili@cs.umd.edu

construct experience bases that provide qualitative and
quantitative data about the advantages and disadvantages of using'
these software engineering techniques, methods and tools, in
different sets and domains. According to Basili et al [4]
experimentation in Software Engineering is necessary because
hypotheses without proof are neither safe nor reliable as a
knowledge source. Replication is an important activity in this
scenario.

According to Fusaro et al [6], replicate means to reproduce as

faithfully as possible a previous experiment, usually run by other
researchers, in different environment and conditions. When the

results generated by a replication are coincident with the ones of

the original experiment, they contribute to strength the hypotheses
being studied. Otherwise, other parameters and variables should

be investigated.

This paper reports the results obtained in an experiment aimed at

comparing software inspection and testing techniques. This

experiment, here on named the ITonCode experiment, was based

on two previous experiments conducted by Basili & Selby [1] and
Kamsties & Lott [2]. The ITonCode experiment is not a

replication but rather an extension of the other studies. It adds

increasingly strict structural and mutation-based testing criteria to
the original Basili-Selby experiment, in an approach named
Incremental Testing.

The problem of conducting effective coordinated replications has
been addressed by the Readers Project, a collaborative research

effort to develop, validate and package reading techniques for

software defect detection through experimentation. This project,

supported by the Brazilian (CNPq) and American (NSF) national
research foundations, investigates techniques for software

document review in diverse technical and cultural settings [3]. It

is important to highlight that this experiment contributed to the

establishmentof the Experimental Knowledge Sharing Model

5th ACM-IEEE International Symposium on Empirical Software Engineering - Vol II: Short Papers and Posters 42

I
j
1
1

I
i

I

i

I

i
I
i
i

-- -- - -. - --- - ..-

(EKSM) [10]. The EKSM defines the types of knowledge sharing
that must occur during experimental replications.

This paper is organized as follows. Section 2 comments on the

two previous studies. Section 3 characterizes lTonCode and

describe the main results; and Section 4 presents the conclusions
of this work.

2. THE ORIGINAL EXPERIMENT

. Basili & Selby Experiment
Studied TechniQues: code reading, applying stepwise abstraction;

functional testing, applying equivalence partition and boundary
value analysis; and structural testing, applying All-Nodes criteria-

Software Artifacts: three Fortran programs with 169, 147 and 365

lines of code with 9, 6 and 12 faults, respectively.

Obiectives: comparing three different fault detection techniques
concerning effectiveness (the average percentage of faults found
by subjects) and efficiency (the average number of faults found
by each subject per hour) to observe faults.

Participants: The experiment was carried out three times: the first
two with 42 advanced students from "Software Design and

Development" course at the University of Maryland and the last
one with 32 developers from NASA and Computer Science

~orporation.

Experimental Proiect: in the execution phase each technique was

applied in a different session where the participants could identify

"the faults. The artifacts were applied in such a way that it avoided
the exchange of information between the subjects.

Main results: code reading, followed by functional testing, had the

best percentage of detected faults.

. Kamsties& Lott Experiment
Techniques: code reading, applying stepwise abstraction;
functional testing, applying equivalence partition; and structural
testing, applying all-branches, all-multiple condition, all-loops
and all-relational operators criteria

Software Artifacts: three C programs with 44, 89 and 127 lines of
code in the training sessions and other three ones with 260, 279
and 282 lines of code and 11, 14 and 11 defects, respectively, in
the experiment execution.

Objectives: comparing three different fault detection techniques
concerning effectiveness and efficiency to observe faults and
isolate defects.

~
I

!
i
I

!
\
I
1

!

Participants: The experiment was carried out two times, both with
undergraduate students, with 27 and 23 students, respectively.

Experimental Proiect: it was based on Basili & Selby [I]
experimental project, with a step added to isolate defects. The
training was elaborated to be applied into two parts (theoretical
and practical). The artifacts were applied in such a way that it
avoided the exchange ofinformation between the subjects.

Main results: code reading and functional testing had the same
percentage of detected faults while structural testing had a smaller

one. Besides, functional testing had a better performance in
relation to the efficiency to isolate defects.

3. THE ITonCode EXPERIMENT
The aim of this study is to address the results of previous
experiment on comparing reading and testing techniques adding
the perspective of data-flow and mutation based testing criteria.
To achieve this objective the previous lab package had to be
downloaded from the original experimenters and updated: the
planning of the experiment, the training material and data
collection forms. To run this experiment two tools that support the
unit Testing of C programs were used: Proteum [8] that supports
mutation analysis; and Po/cetool [9] that supports data-flow
criteria.

Because of the level of effort involved in running even a
replicated or extended experiment, the authors were not willing to
undertake a full experiment without testing the material and
concepts in their own environment. Although the pilot study also
required an investment of effort and resources, it was considered
appropriate and necessary to ensure the quality and conformance
of the experimental process. The pilot study was very useful for
identifying tacit knowledge issues. The pilot study involved three
experienced people. Their performance determined the initial
expected lower bound for the experiment running time and upper
bound for the expected defect detection effectiveness.

TechniQues: code reading, applying stepwise abstraction;
functional testing, applying equivalence partition and boundary
value analysis; and incremental testing. Incremental Testing
means incrementally evolving the test case set, obtaining adequate
test set for the all-nodes, all-branches, all-uses, all-potential-uses
and mutation analysis criteria.

Software Artifacts: the same artifacts of Kamsties and Lott [2]
experiment, both for training and execution phases.

Obiectives: comparing three different fault detection techniques
concerning effectiveness and efficiency to observe faults and
isolate defects. In this paper we only present data on the
effectiveness.

Participants: 12 graduate students from UFSCar and ICMC-USP.

Exoerimental Proiect: Essentially the same project defined by
Basili and Selby with the isolation step introduced by Kamsties
and Lott. The training was carried out in two consecutives days
and for each of the five techniques (code reading, functional
testing, control-flow testing, data-flow testing and mutation
testing) the participants had 30 minutes of theory training and 60
minutes of practical training. The execution was carried out along
three consecutives weeks. The artifacts were applied in such a
way that it avoided the exchange of information between the
subjects.

Main results: Although data-flow and mutation based criteria have

been introduced, code reading presented the best percentage of

isolating defects. On the other hand, functional testing performed
worst than incremental testing. Moreover, the combination of any

two techniques performed better or equal to the techniques alone,

for all the programs (see Figure 1). Similar results were obtained
for detected faults, in accordance to Basili and Selby's results. We

5th ACM-IEEE International Symposium on Empirical Software Engineering - Vol II: Short Papers and Posters 43

observe that the differences among the techniques have yet to be
tested for statistical significance.

TECHNIQUE PERFORMANCE

100% 100% 100%

NT.. NametblCmdtin.

II1JCR13FT glT !mCR' FT mCR' IT OFT' ITI

Figure 6. Better/Worst Performance by technique and
program or a combination of techniques.

4. CONCLUSION
Threats and limitations should be taken in account when using the
results discussed in this paper. For instance, subject selection
represents an internal threat for our experiment because subjects
may have different degrees of ability and expertise. This effect is
mitigated by the fact that all subjects apply all techniques. Also,
the subject survey form allows taking the subject experience into
consideration. Outliers were analyzed against the subject
background information. Training time is another point that
should be further addressed. Different learning curves for the
techniques may interfere in their performance. The results may
reflect a transient state of learning and consequently of
effectiveness of the techniques. We mitigate some of the learning
effect on the experiment internal validity by applying the
programs in increasing order of complexity. There is also a
possible interaction between learning and the order in which the
subjects apply the techniques. This is mitigated by the
permutation of the ordering of the techniques among the subject.
However, there is no way to avoid the fact that a subject
accumulates defect detection experience from one experimental
trial to the other.

In spite of code reading presenting the best percentage of detected
faults and defect isolation, the fact that any combination of two
techniques performed better or equal to the techniques alone
points out that the complementary aspects of the techniques
should be explored in the establishment of VV&T strategies.

In the near future we intend to explore these set of experiments in
an industrial set, considering also the 00 paradigm as well.

5. ACKNOWLEDGMENTS
Our thanks to the members of the Readers Project and to the
funding agencies CNPq. FAPESP and NSF.

6. REFERENCES
{I] Basili, V.; Selby, Richard W. "Comparing the Effectiveness

of Software Testing Strategies". IEEE Transactions on
Software Engineering. n. 12, vol. SE-13 (1987),1278-1296.

{2] Kamsties, Erik. E Lott, Christopher M. "An Empirical
Evaluation of Three Defect-Detection Techniques."
Technical Report ISERN 95-02. Department of Computer
Science, University ofKaiserslautern, 67653, Kaiserslautern,
Germany, May 1995.

[3] Maldonado, J.e.; Martiniano, L. A. F.; Doria, E.S.; Fabbri,
S.C.C.P.F.; Mendon<;:a,M. "Readers Project: Replication of
Experiments -A Case Study Using Requeriments
Documents". In: ProTeM-CC-Project Evaluation Workshop
- International Cooperation, CNPq, Rio de Janeiro, RJ,
October, 2001, pp. 85-117.

{4] Basili, V. R.; Green S.; Laitenberger, 0.; Lanubile, F.; ShulI,
F.; Sorumgard, S.; Zelkowitz, M. "Packging Researcher
Experience to assist Replication of Experiments". In: ISERN
Meeting, Sydney, Australia, 1996

{5] Law, D., and Naem, T., "DESMET: Determining and
Evaluation Methodology for Software Methods and Tools",
Proceedings of BSc Conference on CASE -Current Practice,
Future Prospects, Cambridge, England, March, 1992.

[6] Fusaro, Pierfrancesco; Filippo Lanubile; Viusaggio
Giuseppe. "A Replicated Experiment to Assess
Requirements Inspection Techniques", Empirical Software
Engineering Journal, vol. 2, n°. I, p.39-57, 1997

[7] Doria, E. S. "Experimental Studies Replication in Software
Engineering". MsC Thesis, ICMC-USP, Sao Carlos, 2001

[8] Delamaro, M. E. "Proteum - A Testing Environment Base
don Mutation Analysis". MsC Thesis. ICMC I USP, Sao
Carlos, SP, October, 1993.

[9] Chaim, M.L. "POKETOOL - A Tool to Support Programs
Structural Testing Base don Data-Flow Analysis". MsC
Thesis, DCAlFEEIUNICAMP, Campinas, SP, April, 1991.

[10] Shull, F., M. Mendonca, V. Basili, J. Carver, J. Maldonado,
S. Fabbri, G. Travassos, and M. Ferreira, "Knowledge-
sharing Issues in Experimental Software Engineering."
Empirical Software Engineering - An International Journal,

2004.9(1): p. 111-137.

5th ACM-IEEE International Symposium on Empirical Software Engineering - Vol II: Short Papers and Posters 44

100%
100%

90%

80%

I 70"k

i 60"10

1i 50%

f 40%
Ii 30<>10..

20%

10%

0"10

