

Architecture Reading Techniques: A Feasibility Study

Jeffrey Carver and Krystle Lemon
Mississippi State University

Department of Computer Science and Engineering
carver@cse.msstate.edu, kdl18@msstate.edu

Abstract

In order to correctly determine if the software
architecture for a system complies with the user
requirements, it is necessary to review the software
architecture description. There are different means
available to perform these reviews ranging from
checklists to detailed step-by-step protocols. In this
paper we propose the ARTs, a new set of reading
techniques focused on software architecture. We
provide an overview of these new techniques and
report on an initial feasibility study. The results of the
feasibility study showed that the techniques were
useful and seen by the subjects to provide benefit over
a checklist-based approach. Another interesting result
requiring additional research is that the checklist
seemed to focus reviewers on defects of commission
while the reading techniques seemed to focus
reviewers on defects of type omission.

1. Introduction

A software architecture document is the high-level
description of a system that ignores implementation
detail. It provides a means to model the structure,
behavior, relationships, and constraints among the
components of a system [7], [8]. The process of
creating the software architecture document includes
both making the architecturally significant decisions
and recording those decisions in the document. This
process is often included as part of the software design
phase. Recently it has become a more independent
discipline because of the benefits isolating software
architecture decisions provide to the software [2].
Software architecture is of particular concern to
implementers of a system because it serves as a
blueprint for construction. At the software architecture
level, it is assumed that the user requirements are
documented and understood so that the system can
further defined [12]. The architecture will eventually
be refined into a more detailed design. Therefore, it is
imperative that the software architecture be thorough,

well understood, and as correct as possible to prevent
defects from slipping to subsequent phases of the
lifecycle where they are more expensive to repair [2].

Specific techniques such as checklists or reading
techniques can facilitate the inspection of software
architecture documents. In this paper we introduce the
Architecture Reading Techniques (ARTs). The
techniques in this set contain well-defined steps and
questions to help an inspector find potential defects in
the artifact. Because the ARTs are new they will
evolve based on the results of empirical studies. This
paper reports on an initial ARTs feasibility study,
conducted in a university course. The main purpose of
this study was to better understand the use of the
ARTs and compare them to a checklist.

This paper is organized as follows. Section 2
provides an overview of the techniques and related
work. Section 3 describes the feasibility study. Results
and discussion are presented in Section 4. Finally,
Section 5 discusses the conclusions and future work.

2. Architecture Reading Techniques

Previous work has shown the value of scenario-
based reading techniques for inspecting various
software artifacts [3, 9-11]. These findings led us to
create a family of scenario-based reading techniques
tailored for defect detection in software architecture
documents. Our belief is that additional guidance
provided by these techniques will focus reviewers on
different defects than the checklist. The ARTs were
developed using an approach consistent with that used
to develop other scenario-based reading techniques.

Much of the information encoded in a software
architecture document is captured in a series of
diagrams. These diagrams contain different shapes that
are connected by various types of lines, each having a
specific meaning depending on the diagram.
Additionally, the software architecture document
contains textual descriptions that accompany and
explain the diagrams. Due to the similarity between
software architecture and software design documents,

i.e. each have multiple viewpoints, a set of Object
Oriented Reading Techniques (OORTs) for design
[11] were chosen as the inspiration for the
development of the ARTs. The OORTs contained two
types of techniques, horizontal and vertical.
Horizontal Techniques focus on ensuring consistency
among documents from the same lifecycle phase.
Conversely, Vertical Techniques focus on ensuring
traceability to a previous lifecycle phase.

The software architecture document contains
information about three basic concepts accompanied
by additional documentation. First, information about
the logical structure (the code modules) is included.
Second, information about the communication patterns
(the run-time interactions) is included. Finally,
information about the physical structure (code teams,
hardware) is documented. Along with these three
types of information, the architecture document also
includes additional supporting information necessary
to fully understand the system [5]. This understanding
was used to create the four ARTs (one horizontal
technique and three vertical techniques).

The first vertical technique focuses on ensuring that
the logical decomposition of the modules in the
software architecture is realistic based on the
information provided in the requirements document.
The second vertical technique focuses on ensuring that
the communication patterns are accurate based on the
requirements. The third vertical technique focuses on
comparing the information about the stakeholders,
architectural concerns and architectural rationale to the
information contained in the requirements. The
horizontal technique focuses on internal consistency
within the document [4]. The technique includes three
specific comparisons:

1. Logical structure vs. communication patterns
2. Logical structure vs. physical structure
3. Communication patterns vs. physical

structure.

3. The Study

The main goal of the study was to evaluate the
feasibility of the ARTs. Along with this goal, we also
wanted to begin understanding the relationship
between the ARTs and a more traditional checklist.
The checklist was adapted from one described in the
course textbook [5]. We were interested in
understanding whether the ARTs and the checklist
focused reviewers on different types of defects. The
checklist provided detailed questions to help the
reviewers determine if the architecture document was
consistent with: the stakeholders, itself, good form, the
requirements, and the underlying architecture it
described.

The study was conducted at Mississippi State
University in the Fall 2004 CSE 4233/6233 Software
Architecture course. This course is offered to senior
level undergraduate students and graduate students.
The purpose of this course was to teach the students
the fundamental software architecture concepts and
how to document that information. As part of the
course, the students incrementally developed a
software architecture document for a software system.
Twenty-three students participated as subjects in this
study (18 undergraduates and 5 graduates).

Two software systems were used in this study. The
first was the Tactical Software Aircraft Flight
Evaluation (TSAFE) architecture. It was designed to
assist air traffic controllers in detecting and resolving
short-term conflicts between aircrafts [6]. This
document was created by the researchers, and it was
seeded with relevant defects based on previous
experiences. The second was the Computer-Aided
Dispatch System for the London Ambulance Service
(LAS). The purpose of this system was to aid in the
dispatch and scheduling of ambulances to respond to
emergencies [1].

The study was performed in-vitro using the four
homework assignments of the course. The first three
assignments involved both inspection of an
architecture document and creation of an architecture
document. In each of these three assignments, the
students inspected different aspects of the TSAFE
document (i.e. nothing was re-inspected) created by
the researchers using the checklist. Then they created a
portion of their own architecture for the LAS. The
fourth assignment involved only the inspection of an
architecture document. In this assignment, the subjects
used the ARTs to inspect a version of the LAS
document provided by the researchers. This document
was not the same one the students had created in the
previous assignments. Table 1 provides a summary of
the study details.

We collected an assortment of data across during
all of the assignments to evaluate the techniques. The
quantitative data included the number and type of
defects found and the amount of time taken. This data
was collected via a defect report form. To ensure that
the defect data collected during the inspections was
realistic, the subjects were given their homework
grade based on completion of the assignment rather

Assignment Artifact Technique
1 TSAFE - Logical Checklist
2 TSAFE - Runtime Checklist
3 Complete TSAFE Checklist
4 Complete LAS ARTs

Table 1 – Overview of Study

than number of defects reported. We were more
interested in the subjects following the instructions
given and reporting only those items they truly
believed were defects. We did not want the number of
defect reports to be inflated by a false perception that
more defects would equate to a higher grade.

We also collected qualitative data to help us better
understand the use of the techniques. Qualitative data
was extracted from written assignment reports in
which the subjects provided a self-analysis of their
performance during the inspection. At the conclusion
of all four assignments, each subject completed a
questionnaire to gauge their overall perception.

4. Results and Discussion

The quantitative data helped us to understand the
types of defects found using the different techniques
(checklist and ARTs). No statistical tests were run to
compare checklist to ARTs. Because the study was
designed primarily to gauge feasibility, it was
impractical to compute such statistical analysis.

4.1 Summary of Quantitative Data

Our analysis was based on defect type, omission vs.
commission. Defects of omission occur because some
necessary information was left out of the document.
Defects of commission occur because information was
recorded incorrectly in the document.

The results from Assignment 1, focused on the
logical portion of the TSAFE system, indicated that
the subjects were more likely to find defects of
commission than defects of omission. In Assignment
2, focused on the communication patterns of the
system, the subjects were equally likely to find defects
of omission and defects of commission. In Assignment
3, focused on the stakeholders, rationale and other
information not yet inspected, the subjects were again
more likely to find commission defects than omission
defects. Finally, in Assignment 4, using the ARTs, the
subjects were more likely to find defects of omission
rather than defects of commission.

4.2 Summary of Qualitative Data

In addition to the quantitative results, we collected
qualitative data to help us understand the feasibility
and usefulness of the ARTs. Twenty out of the twenty-
three subjects thought that the ARTs were more
effective and structured than the checklist.
Furthermore, the subjects reported that they preferred
the ARTs to the checklist because the ARTs:

• focused their attention in specific areas

• gave specific instructions on how to inspect
and explained the types of things that were
likely defects

In order to understand the feasibility of the ARTs the
subjects were asked if they needed any knowledge
outside of basic software engineering. Eighty-five
percent of the subjects indicated that they did not need
any additional knowledge to use the ARTs. This
qualitative data supports the idea that the ARTs are
feasible and easy to understand and use.

4.3 Discussion of Results

These results suggest that the ARTs and the
checklist have different effects on a software
architecture inspection. The qualitative data gives
insight into the inspector’s perception that the ARTs
provide much needed guidance. Furthermore, the
quantitative data indicates that the ARTs may help
inspectors find more defects of omission while the
checklist may help find more defects of commission.
The data from the four assignments is summarized in
Figure 1. For assignments 1-3 (checklist-based) the
subjects were generally more likely to find
commission defects while on assignment 4 (ART-
based) the subjects were more likely to find omission
defects. No conclusions should be drawn based on the
higher overall rate of the ARTs compared with the
checklist. This result is likely due to the different
artifacts and other experimental conditions.

4.4 Threats to Validity

As a feasibility study, there were multiple threats to

Figure 1 – Summary of Data

validity that must be addressed in future studies. These
threats include, but are not limited to:

• Different artifacts used for each technique,
(both the domain and the defect profile)

• Learning effects across the assignments

5. Conclusions and Further Work

This paper presented a new family of software
architecture inspection techniques, the ARTs, and
described a feasibility study to evaluate these
techniques. The use of a checklist-based inspection
was compared to the use of the ARTs. The results of
the inspections were analyzed to determine the type of
defects that were found more often using each
technique. In the checklist-based inspections, the
subjects were more effective at finding defects of
commission than defects of omission. While in the
ART-based inspection, the subjects found more
defects of omission than commission. The ART’s
provided more guidance for the inspectors to identify
information that was missing from the document such
as modules, components, and connections. The
subjects were able to effectively use the ART’s
because of the detailed guidance provided.

Our future work will include further investigation
of the types of defects that can be uncovered by the
ART’s as compared with other techniques. In addition,
we will examine characteristics of defects, other than
omission or commission that may differentiate the
checklist and the ARTs. We will also run a more
controlled study using the techniques on the same (or
similar) artifacts. Finally, the checklist and the ARTs
appear to be complementary in the defects found. This
result needs further investigation to determine the
most effective way to combine the two approaches in
an inspection.

Acknowledgements

This work supported in part by NSF grant CCF-
0438923. We would like to thank the students of CSE
4233 at Mississippi State University for serving as
subjects. We would also like to thank Byron Williams
for providing feedback and comments. We would also
like to thank the reviewers for their helpful comments.

References

[1] Allen, E. B., Computer-Aided Dispatch System for the
London Ambulance Service: Software Requirements
Specification, in Technical Report. 2003, Mississippi
State University.

[2] Baragry, J. and Reed, K. "Why Is It So Hard to Define
Software Architecture?" Proceedings of Software
Engineering Conference, 1998. Proceedings. 1998 Asia
Pacific. 1998, 28-36.

[3] Basili, V., Green, S., Laitenberger, O., Shull, F.,
Sorumgaard, S., and Zelkowitz, M., "The Empirical
Investigation of Perspective Based Reading". Empirical
Software Engineering - An International Journal, 1996.
1(2): p. 133-164.

[4] Carver, J., Architecture Reading Techniques, in
Technical Reports. 2005, Mississippi State University
Department of Computer Science and Engineering.

[5] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers,
J., Little, R., Nord, R., and Stafford, J., Documenting
Software Architectures. 2003: Addison-Wesley.

[6] Dennis, G., Tsafe: Building a Trusted Computing Base
for Air Traffic Control Software, Ph.D. Dissertation,
Department of Electrical Engineering and Computer
Science. Massachusetts Institute of Technology. 2003

[7] Eden, A. H. and Kazman, R. "Architecture, Design,
Implementation". Proceedings of Software
Engineering, 2003. Proceedings. 25th International
Conference on. 2003, 149-159.

[8] Erickson, R. L., Griffeth, N. D., Lai, M. Y., and Wang,
S. Y. "Software Architecture Review for
Telecommunications Software Improvement".
Proceedings of Communications, 1993. ICC 93.
Geneva. Technical Program, Conference Record, IEEE
International Conference on. 1993, 616-620.

[9] Laitenberger, O., Atkinson, C., Schlich, M., and El
Emam, K., "An Experimental Comparison of Reading
Techniques for Defect Detection in Uml Design
Documents". Journal of Systems and Software, 2000.
53(2): p. 183-204.

[10] Laitenberger, O., El Emam, K., and Harbich, T. G., "An
Internally Replicated Quasi-Experimental Comparison
of Checklist and Perspective Based Reading of Code
Documents". IEEE Transactions on Software
Engineering, 2001. 27(5): p. 387-421.

[11] Travassos, G., Shull, F., and Carver, J. "Reading
Techniques for Oo Design Inspections". Proceedings of
24th NASA Software Engineering Workshop. 1999.
Greenbelt, MD,

[12] Weyuker, E. J. "Predicting Project Risk from
Architecture Reviews". Proceedings of Software
Metrics Symposium, 1999. Proceedings. Sixth
International. 1999, 82-90.

