
A Family of Reading Techniques for OO Design Inspections

Guilherme H. Travassos†,• Forrest Shull‡ Jeffrey Carver†

travassos@cs.umd.edu fshull@fraunhofer.org carver@cs.umd.edu

†Experimental Software
Engineering Group

Department of Computer Science
University of Maryland at College

Park
A.V. Williams Building

College Park, MD 20742
USA

•Computer Science and System
Engineering Department

COPPE
Federal University of Rio de Janeiro

C.P. 68511 - Ilha do Fundão
Rio de Janeiro – RJ – 21945-180

Brazil

‡Fraunhofer Center - Maryland
University of Maryland
4321 Hartwick Road

Suite 500
College Park, MD 20742

 USA

ABSTRACT

Inspections can be used to identify defects in software artifacts. In this way, inspection methods help to
improve software quality, especially when used early in software development. Inspections of software
design may be especially crucial since design defects (problems of correctness and completeness with
respect to the requirements, internal consistency, or other quality attributes) can directly affect the
quality of, and effort required for, the implementation. We have created a new family of “reading
techniques” (so called because they help a reviewer to “read” a design artifact for the purpose of
finding relevant information) that gives specific and practical guidance for identifying defects in
Object-Oriented designs. Each reading technique in the family focuses the reviewer on some aspect of
the design, with the goal that an inspection team applying the entire family should achieve a high
degree of coverage of the design defects.
In this paper, we present an overview of this new set of reading techniques. We discuss how these
techniques were developed and suggest how readers can use them to detect defects in high level object
oriented design UML diagrams.

Keywords: OO Design, Reading Techniques, Software Inspection, Software Quality, Empirical
Software Engineering

1. Introduction

A software inspection aims to guarantee that a particular software artifact is complete,
consistent, unambiguous, and correct enough to effectively support further system
development. For instance, inspections have been used to improve the quality of a system’s
design and code (Fagan, 1976). Because they rely on human understanding to detect defects,
they have the advantage that they can be performed as soon as a software work artifact is
written and can be used with of different artifacts and notations. Typically, inspections require
individuals to review a particular artifact, then meet as a team to discuss and record defects,
which are then sent to the document’s author to be corrected. Because a team typically
performs an inspection, they are a useful way of sharing technical expertise about the quality
of the software artifacts among the participants. And, because developers become familiar
with the idea of reading each other’s artifacts, they can lead to more readable artifacts being
produced over time.

On the other hand, the dependence on human effort, causes nontechnical issues to
become a factor: reviewers can have different levels of relevant expertise, can get bored if
asked to review large artifacts, can have their own feelings about what is or is not important,
or can be affected by political or personal issues. For this reason, there has been an emphasis
on defining processes that people can use for performing effective inspections.

Most publications concerning software inspections have concentrated on improving
the inspection meetings while assuming that individual reviewers are able to effectively detect
defects in software documents on their own. Fagan (1986) and Gilb and Graham (1993)

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

mailto:travassos@cs.umd.edu
mailto:fshull@fc-md.umd.edu
mailto:carver@cs.umd.edu

emphasizes the inspection method1, identifying the phases of planning, detection, collection
and correction for it. Having been the basis for many of the review processes now in place
(e.g., at NASA (1993)), they have inspired the direction of much of the research in this area,
which has tended to concentrate on improving the review method. However, they do not give
any guidelines to the reviewer as to how defects should be found in the detection phase; both
assume that the individual review of these documents can already be done effectively.

Proposed improvements to Fagan’s method often center on the importance and cost of
the meeting. However, empirical evidence has questioned the importance of team meetings by
showing that meetings do not contribute to finding a significant number of new defects that
were not already found by individual reviewers (Votta, 1993) (Porter, 1995). This line of
research suggests that efforts to improve the review technique, that is, the process used by
each reviewer to find defects in the first place could be of benefit.

One approach to doing this is provided by software reading techniques. A reading
technique is a series of steps for the individual analysis of a software product to achieve the
understanding needed for a particular task (Basili et al., 1996). Reading techniques attempt to
increase the effectiveness of inspections by providing procedural guidelines that can be used
by individual reviewers to examine (or “read”) a given software artifact and identify defects.
Rather than leave reviewers to their own devices, reading techniques attempt to capture
knowledge about best practices for defect detection into a procedure that can be followed.
Families of reading techniques have been tailored to defect inspections of requirements (for
requirements expressed in English or SCR, a formal notation) and to usability inspections of
user interfaces. There is empirical evidence that software reading is a promising technique for
increasing the effectiveness of inspections on different types of software artifacts, not just
limited to source code (Porter, 1995)(Basili et al., 1996)(Basili et al., 1996b)(Fusaro et al.,
1997)(Shull, 1998)(Zhang, 1998).
 In this work, we describe a family of software reading techniques for the purpose of
defect detection of high-level Object-Oriented (OO) designs diagrams represented using
Unified Modeling Language (UML) [Fowller00]. The Object-Oriented Reading Techniques
(OORTs) consist of 7 different techniques that support the reading of different design
diagrams. The development of these techniques has been supported by a series of empirical
experiments.
 With these experiments we are looking for answers for the following questions:
• Is the idea of object-oriented reading techniques feasible?
• Are the techniques technically sounded and described in such way that they can be used to
inspect high-level object-oriented design?
• Can the techniques be used in the context of a controlled software development process?
• Are the techniques usable in an industrial software development process?

By applying what we had learned about inspections with PBR (Shull et al., 2000) to
this new domain, we were able to empirically evolve the techniques and demonstrate their
effectiveness. The results we have so far provide evidence that the OORTs are feasible and
can support readers in identifying different types of design defects (Travassos et al.,
1999a)(Shull et al., 1999)(Travassos et al., 1999b).

Section 2 briefly describes object-oriented design in terms of the information that is
important to be checked during software inspections. Section 3 introduces the reading

1 In this text we distinguish a “technique” from a “method” as follows: A technique is a series of steps, at some level of
detail, that can be followed in sequence to complete a particular task. We use the term “method” as defined in (Basili, 1996),
“a management-level description of when and how to apply techniques, which explains not only how to apply a technique,
but also under what conditions the technique’s application is appropriate.”

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

techniques, showing the different types of defects such techniques are intended to identify and
an outline of the whole set of techniques. The fourth section discusses how the techniques
were developed. Finally, some suggestions for future work are discussed in the conclusions.

2. Object Oriented Designs in UML

A high level design is a set of artifacts concerned with the representation of real world
concepts. As a consequence of using the object-oriented paradigm these concepts are
represented as a collection of discrete objects that incorporate both data structure and
behavior.

High-level design activities start after the software product requirements are captured;
they deal with the problem description but do not consider the constraints regarding it. That
is, these activities are concerned with taking the functional requirements and mapping them to
a new notation or form, using the paradigm constructs to represent the system via design
diagrams instead of just a textual description. Instead of using this approach to solve the
problem, developers are trying to understand it. At the end, a set of well related, but notational
different, artifacts are built. Since high level design is built at a different time than the
requirements, using a different viewpoint and abstraction level, it is difficult to inspect these
documents to verify both whether they are consistent among themselves and if the
requirements were correctly and completely captured.

The main interest of this work is to define reading techniques that can be applied on
high-level design documents. We feel that reviews of high-level designs may be especially
valuable since they help to ensure that developers have adequately understood the problem
before defining the solution. Because the low-level design builds a model for the code with a
specific solution to the problem described in the high-level design, it is important that the
quality of the high-level design be as high as possible. Reviews of this kind can help ensure
that low-level design starts from a high-quality base.

More specifically, the reading techniques described in this work are tailored to
inspections of high-level design artifacts that capture the static and dynamic views of the
problem using UML notation: class, sequence, and state diagrams. Usually, these are the main
UML diagrams that developers build for high-level OO design. To compare design contents
against requirements, we expect that there will be a textual description of the functional
requirements that may also describe certain behaviors using more specialized representations
such as use-cases [Jacobson95].

Thus, we identify the following as important sources of information for ensuring the
quality of a UML high level design (Travassos et al, 1999b):
• A set of functional requirements that describes the concepts and services that are

necessary in the final system;
• Use cases that describe important concepts of the system (which may eventually be

represented as objects, classes, or attributes) and the services it provides;
• A class diagram (possibly divided into packages) that describes the classes of a system

and how they are associated;
• A set of class descriptions that lists the classes of a system along with their attributes and

behaviors;
• Sequence diagrams that describe the classes, objects, and possibly actors of a system and

how they collaborate to capture services of the system;
• State diagrams that describe the internal states in which a particular object may exist, and

the possible transitions between those states.

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

3. Reading Techniques for high-level design

Each reading technique can be thought of as a set of procedural guidelines that reviewers can
follow, step-by-step, to examine a set of diagrams and detect defects. The types of defects on
which our techniques are focused, as listed in Table 1, are based on earlier work with
requirements inspections (Shull et al., 2000). The defect taxonomy is important since it helps
focus the kinds of questions reviewers should answer during an inspection.

 We defined one reading technique for each pair or group of diagrams that could
usefully be compared against each other. For example, use cases needed to be compared to
interaction diagrams to detect whether the functionality described by the use case was
captured and all the concepts and expected behaviors regarding this functionality were
represented. The full set of our reading techniques is defined as illustrated in Figure 2, which
differentiates horizontal2 (comparisons of documents within a single lifecycle phase) from
vertical3 (comparisons of documents between phases) reading.

While
describing the
represent the ri
is that when al
covered. The d

2 Consistency amo
3 Traceability betw

In Proceedings of
Engineering. Joao
Requirements
Descriptions

Use-Cases
Requirements
Specification

High Level
Design

Class
Diagrams

Class
Descriptions

State Machine
Diagrams

Interaction
Diagrams

(Sequence)
Vert. reading
Horz. reading

Figure 2 – Set of OO Reading Techniques
Type of Defect Description
Omission One or more design diagrams that should contain some concept from

the general requirements or from the requirements document do not
contain a representation for that concept.

Incorrect Fact A design diagram contains a misrepresentation of a concept described
in the general requirements or requirements document.

Inconsistency A representation of a concept in one design diagram disagrees with a
representation of the same concept in either the same or another
design diagram.

Ambiguity A representation of a concept in the design is unclear, and could cause
a user of the document (developer, low-level designer, etc.) to
misinterpret or misunderstand the meaning of the concept.

Extraneous
Information

The design includes information that, while perhaps true, does not
apply to this domain and should not be included in the design.

Table 1 – Types of software defects, and their specific definitions for OO designs
horizontal reading aims to identify whether all of the design artifacts are
same system, vertical reading tries to verify whether those design artifacts
ght system, which is described by the requirements and use-cases. So, the goal
l the techniques are used together, then all the quality issues in the design are
evelopment team can use the whole set of the techniques, but if some design

ng documents is the most important feature here.
een the phases is the most important feature here.

 WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
 Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

artifacts do not exist, there is no impact on the design inspection process4. The horizontal
techniques should be performed before the vertical techniques, however, a subset or
reordering of the techniques may be chosen based on important attributes of the design to be
reviewed. This is particularly interesting when developers are dealing with specialized
application domains. For example, consider a system whose functionality is based mainly on
its reaction to stimuli where state machine diagrams are common. In this situation, it could be
beneficial to use the reading techniques that focus on state machine diagrams before using the
reading techniques that focus on the other design diagrams. For conventional systems, such
as database systems, the semantic model of the information and the flow of the transactions
seem to be the important information. Therefore, a subset of the techniques could be picked
that focus on this information. In this situation, first reading the class diagram against the
sequence diagrams seems to be a good idea then continuing with the rest of the techniques.

Further description about the process of applying the reading techniques can be found
in (Travassos et al., 1999b). Information about the techniques and a complete definition for all
the terms and definitions used in the context of this paper can be found in (Shull et al., 1999),
which is accessible via the web.

4. The development of OORT's

The evolution of OORT's was supported by empirical experiments. We have modified

and improved the techniques based on a series of empirical studies. Figure 3 shows the series
of experiments conducted since 1998.

e
te
te
a
a
th
d

4
c

In
E

Feasibility
study

Fall/98

Pilot Study of
Observational studies

Summer/99

Observational
studies

Fall/99

Case Study: Use in the
Software Process

Spring/00

OORTs Series of Experiments

Controlled experiment:
Use in the Industrial
Software Process

Is the idea sound?

Are the techniques well-
constructed?

Can we use them in a
software process?

Can we use them in an
industrial software process?

(Summer/01)

Figure 3 –Experimentation process to develop OO Reading

Initial validation was accomplished by means of a study (Travassos et al., 199) (Shull

t al., 1999) that provided evidence for the feasibility of these techniques. Using the
chniques did allow teams to detect defects, and in general subjects agreed that the
chniques were helpful. Also, the vertical techniques tended to find more defects of omitted

nd incorrect functionality, while the horizontal techniques tended to find more defects of
mbiguities and inconsistencies between design documents, lending some credence to the idea
at the distinction between horizontal and vertical techniques is real and useful. A full

escription of the results can be found in (Travassos et al. 1999).

 However, this situation is not true for the software process as a whole. Some artifacts are important, such as a
lass diagram if missing implies that the design didn't capture the static view of the problem.

 Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
ngineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

Further studies have been undertaken to improve the practical applicability of the
techniques. As a result of specific feedback from the feasibility study, we developed a second
version of the techniques. The feasibility study had identified global issues for improvement,
that is, issues that affected the entire process, such as the amount of semantic versus syntactic
checking. This version of the techniques was then studied using an observational approach
(i.e., using experimental methods suitable for understanding the process by which subjects
apply the techniques) (Travassos et al., 1999b). Because this observational approach was a
somewhat unusual approach, we first performed a pilot study to debug the observational
approach and get it to work in our setting. The observational approach was necessary to
understand what improvements might be necessary at the level of individual steps, for
example, whether subjects experience difficulties or misunderstandings while applying the
technique (and how these problems may be corrected), whether each step of the technique
contributes to achieving the overall goal, and whether the steps of the technique should be
reordered to better correspond to subjects’ own working styles.
Reading 3 -- Sequence x State diagrams
Goal: To verify that every state transition for an object can be achieved by the messages sent and
received by that object.
Inputs to Process:

1. Sequence diagrams that describe the classes, objects, and possibly actors of a system and how they
collaborate to capture services of the system.

2. State diagrams that describe the internal states in which an object may exist, and the possible transitions
between states.

For each state diagram, perform the following steps:
I. Read the state diagram to understand the possible states of the object and the actions

that trigger transitions between them.
INPUTS: State diagram (SD).
OUTPUTS: Transition Actions (marked and labeled in green on SD);

Discrepancy reports.
A. Determine which class is being modeled by this state diagram.

1) If you can’t determine the class that is being modeled, then something has been
omitted or is ambiguous. Indicate this on a discrepancy report form.

B. Trace the sequence of states and the transition actions (system changes during the lifetime of the
object, which trigger a transition from one state to another) through the state diagram. Begin at the
start state and follow the transitions until you reach the end state. Make sure you have covered all
transitions.

C. Highlight transition actions (represented by arrows) as you come to them using a green pen. For
example, the state diagram provided in Example 5 contains seven transition actions. The arrow
leading from the state labeled “authorizing” back to itself represents an action that does not
actually change the state of the object. Give each action a unique label [A1, A2, …].

D. Think about the states and actions you have just identified, and how they fit together.
1) Make sure that you can understand and describe what is going on with the object

just by reading the state machine. If you cannot, then the state machine is
ambiguous. Indicate this on the discrepancy report form.

Figure 4 – An excerpt of a Horizontal Reading
These observational investigations showed that horizontal and vertical reading
techniques really find different types of defects. It lead us to produce a third version of the
techniques, exploring more the semantics behind the design models and reflecting the
observed way readers used to apply the techniques while inspecting design artifacts. We also

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

changed from reporting defects to reporting discrepancies5, reflecting the fact that inspectors
and designers may have different ideas about the design, so discrepancies must be evaluated
by the designer to determine if they are real defects. The observational studies also allowed us
to get some clarifications about the role of domain knowledge for these two sets of reading
techniques, especially for horizontal reading. Since horizontal reading is a largely syntactic
check of consistency between two design diagrams, it is not expected to require domain
knowledge. However, we found that domain knowledge does not influence design inspections
using the techniques. Indeed, development expertise played a more important role. Additional
improvements were made regarding usage training and how readers report discrepancies.
Figures 4 and 5 show current version excerpts of horizontal and vertical reading techniques.
These techniques can be compared with the previous ones presented in (Travassos et al.,
1999b) to verify how empirical experimentation helped to evolve them.

The first three experiments aimed to apply the techniques regardless the software
process being accomplished. They concentrated only in the high-level design activity and how
developers were using the techniques rather than trying to understand the effects of the
techniques when used in the context of a full software development process. To understand
the use of these techniques in a software development process a fourth experiment was
performed. Partial results highlight the benefits of using such techniques to inspect design
models. However, more data analysis is still necessary before a complete discussion of the
results.

5. Ongoing Work

The Object Oriented reading techniques (OORTs) have been, and still are, evolving since
their first definition. New issues and improvements have been included based on the feedback
of readers and volunteers. Throughout this process, we have been trying to capture new
features and to understand whether the latest version of the reading techniques keeps its
feasibility and interest. We have found observational techniques useful, because they have
allowed us to follow the reading process as it occurred, rather than trying to interpret the
readers’ post-hoc answers as we have done in the past. Observing how readers normally try to
read diagrams challenged many of our assumptions about how our techniques were actually
being applied.
 However, one question is still open in this area. It regards the level of automated
support that should be provided for such techniques. The observational studies have allowed
us to understand which steps of the techniques can feel especially repetitive and mechanical to
the reader. So, the clerical activities regarding the reading process using OORTs must be
precisely defined and identified. For this situation, further observational studies play an
important role and they should be executed aiming to collect suggestions on how to automate
the clerical activities concerned with OORTs.

Currently, the techniques were used in different contexts and by more than 150
different expertise level developers, from academy to industry. The results we have so far
support answers for our first two questions. Moreover, we have observed from the
preliminary results from last experiment (Figure 3, Spring/00) that the techniques are ready to
be tested in real projects. Experimental replications are planned to take place in different
companies and research groups. In each experiment different issues regarding the techniques
can be identified in order to evolve them or understand them at a deeper level. This series of

5 Discrepancies are differences that show up between documents. They can become defects after the end of the
whole reading process.

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

experiments is an evolutionary process. The feedback from the readers and the observation of
the techniques usage are playing an important role as we work towards a useful and feasible
set of reading techniques for OO design.

Reading 7 -- State Diagrams x Requirements Description and Use-cases
Goal: To verify that the state diagrams describe appropriate states of objects and events that trigger state changes as
described by the requirements and use cases.
Inputs to process:
1. The set of all state diagrams, each of which describes an object in the system.
2. A set of functional requirements that describes the concepts and services that are necessary in the final system.
3. The set of use cases that describe the important concepts of the system
 For each state diagram, do the following steps:
I. Read the state diagram to basically understand the object it is modeling.
II. Read the requirements description to determine the possible states of the object, which

states are adjacent to each other, and events that cause the state changes.
INPUTS: Requirements Description (RD)

OUTPUTS: Object States (marked in blue on SD)
 Adjacency Matrix
A. Put away the state diagram and erase any (*) from that are in the requirements from previous

iterations of this step. Now, read through the requirements looking for places where the concept is
described or for any functional requirements in which the concept participates or is affected. When
you locate one of these, mark it in pencil with a (*) so that it will be easier to use for the remainder of
the step. Focus on these parts of the RD for the rest of the step.

B. Locate descriptions of all of the different states that this object can be in. To locate a state, look for
attribute vales or combinations of attribute values that can cause the object to behave in a different
way. When you locate a state underline it with a blue pen and give it a number.

C. Now identify which one of the numbered states is the Initial state. Using a blue pen, mark it with an
“I”. Likewise mark the end state with an “E”.

D. When you have found all of the states, on a separate sheet of paper, create a matrix with 1..N across
the top and 1..N down the left side, where 1..N represents the numbers that you gave to the states in
the previous step.

E. For each pair of states, if the object can change from the state represented by the number on the left
hand side to the state represented by the number on the top row, then mark the box at the intersection
of the row and column. If you can determine the event(s) that cause the state change put that in the
box, if not just put a check mark (the event will be determined in a later step). If you can determine
that it is not possible for the transition to happen then place an X in the box. If you cannot make a
definite determination then leave the box blank for now.

F. For any event that you have identified above, if there are any constraints described in the
requirements, then write those by the event in the matrix.

III. Read the Use cases and determine the events that can cause state changes.
INPUT: Use Cases
OUTPUT: Completed Adjacency Matrix
A. Read through the use cases and find the ones in which the object participates. Focus on these for the

rest of the step.
B. For each box in the adjacency matrix that has a check mark in it, look through the use cases and

determine what event(s) can cause that transition. These events may not be obvious and may require
you to abstract the use-cases and think about what is actually going on with each object. Erase the
check mark and write this event(s) in its place.

C. For each box that is blank in the adjacency matrix, see if any event that can cause that transition is
described in the use cases. If it is, then write that event in the box, if not then place an X in the box.

…
Figure 5 – An excerpt of a Vertical Reading Technique

The results of these experiments will be published in future technical publications,
which will be available at http://www.cs.umd.edu/projects/SoftEng/ESEG.

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

Acknowledgements
This work was partially supported by UMIACS and by NSF grant CCR9706151.
We recognize the support, management and dedication of Prof. Victor R. Basili for this
research work. Dr. Travassos also recognizes the partial support from CAPES- Brazil.

References
Basili, V. R.; Green, S.; Laitenberger, O.; Lanubile, F.; Shull, F.; Sorumgard, S. and Zelkowitz, M. V.

(1996) The Empirical Investigation of Perspective-Based Reading, Empirical Software
Engineering Journal, I, 133-164.

Basili, V.; Caldiera, G.; Lanubile, F. and Shull, F. (1996b). Studies on reading techniques. In Proc. of
the Twenty-First Annual Software Engineering Workshop, SEL-96-002, pages 59-65,
Greenbelt, MD, December.

Fagan, M. E. (1976). "Design and Code Inspections to Reduce Errors in Program Development." IBM
Systems Journal, 15(3):182-211.

Fagan, M. (1986). "Advances in Software Inspections." IEEE Transactions on Software Engineering,
12(7): 744-751, July.

Fowller, M.; Scott, K. (2000). UML Distilled: Applying the Standard Object Modeling Language,
Second edition, Addison- Wesley. ISBN 0-201-65783-X

Fusaro, P.; Lanubile, F. and Visaggio, G. (1997). A replicated experiment to assess requirements
inspections techniques, Empirical Software Engineering Journal, vol.2, no.1, pp.39-57.

Gilb , T. and Graham, D. (1993). Software Inspection. Addison-Wesley, reading, MA.
Jacobson, I.; Christerson, M.; Jonsson, P. and Overgaard, G. (1995). Object-Oriented Software

Engineering: A Use Case Driven Approach, Addison-Wesley, revised printing.
NASA. (1993). National Aeronautics and Space Administration, Office of Safety and Mission

Assurance. "Software Formal Inspections Guidebook". Report NASA-GB-A302, August
1993.

Porter, A.; Votta Jr., L. and Basili, V. (1995). Comparing Detection Methods for Software
Requirements Inspections: A Replicated Experiment. IEEE Transactions on Software
Engineering, 21(6): 563-575, June.

Shull, F. (1998). Developing Techniques for Using Software Documents: A Series of Empirical
Studies. Ph.D. thesis, University of Maryland, College Park, December 1998.

Shull, F.; Travassos, G. and Basili, V. (1999). Towards Techniques for Improved OO Design
Inspections. Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(in association with the 13th European Conf. on Object-Oriented Programming), Lisbon,
Portugal. On line at
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/postscript/ecoop99.ps.

Shull, F.; Travassos, G. H.; Carver, J. and Basili, V. R. (1999). Evolving a Set of Techniques for OO
Inspections. Technical Report CS-TR-4070, UMIACS-TR-99-63, University of Maryland,
October. http://www.cs.umd.edu/Dienst/UI/2.0/Describe/ncstrl.umcp/CS-TR-4070

Shull, F.; Rus, I. and Basili, V. (2000). How Perspective Based Reading can Improve Requirements
Reading. IEEE Computer, July.

Travassos, G.; Shull, F.; Fredericks, M., and Basili, V. (1999). Detecting Defects in Object-Oriented
Designs: Using Reading Techniques to Improve Software Quality. In the Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado.

Travassos, G. H.; Shull, F. and Carver, J. (1999b). Evolving a Process for Inspecting OO Designs.
XIII Brazilian Symposium on Software Engineering: Workshop on Software Quality.
Florianópolis, Curitiba, Brazil, October. On line at
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/ postscript/wqs99.ps.

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

http://www.cs.umd.edu/Dienst/UI/2.0/Describe/ncstrl.umcp/CS-TR-4070

Travassos, G. H.; Shull, F.; Carver, J. and Basili, V. R. (1999c). Reading Techniques for OO Design
Inspections, 24th Annual Software Engineering Workshop, NASA/SEL, Greenbelt, USA,
Dezembro. On line at
http://sel.gsfc.nasa.gov/website/sew/1999/topics/travassos_SEW99paper.pdf.

Votta Jr., L. G. (1993). "Does Every Inspection Need a Meeting?" ACM SIGSOFT Software
Engineering Notes, 18(5): 107-114, December.

Zhang, Z.; Basili, V. and Shneiderman, B. (1998). An empirical study of perspective-based usability
inspection. Human Factors and Ergonomics Society Annual Meeting, Chicago, October.

In Proceedings of WQS'2000 - Workshop Qualidade de Software, at the XIV Brazilian Symposium on Software
Engineering. Joao Pessoa: Brazilian Computer Soceity, 2000. v.1. p.225-237.

	A Family of Reading Techniques for OO Design Inspections
	University of Maryland at College Park

	Introduction
	2. Object Oriented Designs in UML
	3. Reading Techniques for high-level design
	4. The development of OORT's
	5. Ongoing Work
	Acknowledgements

